YL
Yi Lee
Author with expertise in Exosome Biology and Function in Intercellular Communication
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
57
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles

Dhanu Gupta et al.Oct 6, 2021
+24
A
O
D
Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.
1
Citation49
0
Save
1

Engineering of extracellular vesicles for display of protein biotherapeutics

Dhanu Gupta et al.Jun 15, 2020
+21
A
O
D
Abstract Extracellular vesicles (EVs) have recently emerged as a highly promising cell-free bio-therapeutics. While a range of engineering strategies have been developed to functionalize the EV surface, current approaches fail to address the limitations associated with endogenous surface display, pertaining to the heterogeneous display of commonly used EV-loading moieties among different EV subpopulations. Here we present a novel engineering platform to display multiple protein therapeutics simultaneously on the EV surface. As proof-of-concept, we screened multiple endogenous display strategies for decorating the EV surface with cytokine binding domains derived from tumor necrosis factor receptor 1 (TNFR1) and interleukin 6 signal transducer (IL6ST), which can act as decoys for the pro-inflammatory cytokines TNFα and IL6, respectively. Combining synthetic biology and systematic screening of loading moieties, resulted in a three-component system which increased the display and decoy activity of TNFR1 and IL6ST, respectively. Further, this system allowed for combinatorial functionalization of two different receptors on the same EV surface. These cytokine decoy EVs significantly ameliorated disease phenotypes in three different inflammatory mouse models for systemic inflammation, neuroinflammation, and intestinal inflammation. Importantly, significantly improved in vitro and in vivo efficacy of these engineered EVs was observed when compared directly to clinically approved biologics targeting the IL6 and TNFα pathways.
1
Citation8
0
Save
7

Profiling of extracellular small RNAs highlights a strong bias towards non-vesicular secretion

Helena Sork et al.Dec 2, 2020
+10
M
M
H
ABSTRACT Extracellular environment consists of a plethora of different molecules, including extracellular miRNA that can be secreted in association with extracellular vesicles (EVs) or soluble protein complexes (non-EVs). Yet, it is generally accepted that most of the biological activity is attributed to EV-associated miRNAs. The capability of EVs to transport cargoes has attracted much interest towards developing EVs as therapeutic short RNA carriers by using endogenous loading strategies for miRNA enrichment. Here, by overexpressing miRNA and shRNA sequences of interest in source cells and using size exclusion liquid chromatography (SEC) to separate the cellular secretome into EV and non-EV fractions, we saw that strikingly, <2% of all secreted overexpressed miRNA were found in association with EVs. To see whether the prominent non-EV miRNA secretion also holds true at the basal expression level of native miRNA transcripts, both fractions were further analysed by small RNA sequencing. This revealed a global correlation of EV and non-EV miRNA abundance to that of their parent cells and showed an enrichment only for miRNAs with a relatively low cellular expression level. Further quantification showed that similarly to the transient overexpression context, an outstanding 96.2-99.9% of total secreted miRNA at its basal level was secreted to the non-EV fraction. Yet, even though EVs contain only a fraction of secreted miRNAs, these molecules were found stable at 37°C in serum-containing environment, indicating that if sufficient miRNA loading to EVs is achieved, EVs can remain miRNA delivery-competent for a prolonged period of time. This study suggests that the passive endogenous EV loading strategy can be a relatively wasteful way of loading miRNA to EVs and active miRNA loading approaches are needed for developing advanced EV miRNA therapies in the future.