IN
Irina Nazarenko
Author with expertise in Exosome Biology and Function in Intercellular Communication
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
8,033
h-index:
39
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Biological properties of extracellular vesicles and their physiological functions

María Yáñez‐Mó et al.Jan 1, 2015
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
0
Citation4,682
0
Save
1

Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

Thomas Lener et al.Jan 1, 2015
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell‐derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti‐tumour therapy, (b) pathogen vaccination, (c) immune‐modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV‐based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV‐based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME‐HaD), summarize recent developments and the current knowledge of EV‐based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
0

Cell Surface Tetraspanin Tspan8 Contributes to Molecular Pathways of Exosome-Induced Endothelial Cell Activation

Irina Nazarenko et al.Feb 3, 2010
Abstract Tumor-derived exosomes containing the tetraspanin Tspan8 can efficiently induce angiogenesis in tumors and tumor-free tissues. However, little information exists on exosome–endothelial cell (EC) interactions or the proangiogenic role of tetraspanins, which are a constitutive component of exosomes. In this study, we used a rat adenocarcinoma model (AS-Tspan8) to explore the effects of exosomal Tspan8 on angiogenesis. Tspan8 contributed to a selective recruitment of proteins and mRNA into exosomes, including CD106 and CD49d, which were implicated in exosome-EC binding and EC internalization. We found that EC internalized Tspan8-CD49d complex–containing exosomes. Exosome uptake induced vascular endothelial growth factor (VEGF)–independent regulation of several angiogenesis-related genes, including von Willebrand factor, Tspan8, chemokines CXCL5 and MIF, chemokine receptor CCR1, and, together with VEGF, VEGF receptor 2. EC uptake of Tspan8-CD49d complex–containing exosomes was accompanied by enhanced EC proliferation, migration, sprouting, and maturation of EC progenitors. Unraveling these new pathways of exosome-initiated EC regulation could provide new options for therapeutic interference with tumor-induced angiogenesis. Cancer Res; 70(4); 1668–78
0
Citation615
0
Save
24

Airway Basal Cells show a dedifferentiated KRT17highPhenotype and promote Fibrosis in Idiopathic Pulmonary Fibrosis

Benedikt Jaeger et al.Sep 4, 2020
ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. In this study we focus on the profibrotic properties of airway basal cells (ABC) obtained from patients with IPF (IPF-ABC). Single cell RNA sequencing of bronchial brushes revealed extensive reprogramming of IPF-ABC towards a KRT17 high PTEN low dedifferentiated cell type. In the 3D organoid model, compared to ABC obtained from healthy volunteers, IPF-ABC give rise to more bronchospheres, de novo bronchial structures resembling lung developmental processes, induce fibroblast proliferation and extracellular matrix deposition in co-culture. Intratracheal application of IPF-ABC into minimally injured lungs of Rag2 -/- or NRG mice causes severe fibrosis, remodeling of the alveolar compartment, and formation of honeycomb cyst-like structures. Connectivity MAP analysis of scRNA seq of bronchial brushings suggested that gene expression changes in IPF-ABC can be reversed by SRC inhibition. After demonstrating enhanced SRC expression and activity in these cells, and in IPF lungs, we tested the effects of saracatinib, a potent SRC inhibitor previously studied in humans. We demonstrated that saracatinib modified in-vitro and in-vivo the profibrotic changes observed in our 3D culture system and novel mouse xenograft model.
24
Citation7
0
Save