Abstract The C4 cycle is a complex biochemical pathway that has been evolved in plants to deal with the adverse environmental conditions. Mostly C4 plants grow in arid, water-logged area or poor nutrient habitats. Wild species, Oryza coarctata (genome type KKLL; chromosome number (4x) =48, genome size 665 Mb) belongs to the genus of Oryza which thrives well under high saline as well as submerged conditions. Here, we report for the first time that O. coarctata is a C4 plant by observing the increased biomass growth, morphological features such as vein density, anatomical features including ultrastuctural characteristics as well as expression patterns of C4 related genes. Leaves of O. coarctata have higher vein density and possess Kranz anatomy. The ultrastructural observation showed chloroplast dimorphism i.e. presence of agranal chloroplasts in bundle sheath cells whereas, mesophyll cells contain granal chloroplasts. The cell walls of bundle sheath cells contain tangential suberin lamella. The transcript level of C4 specific genes such as phosphoenolpyruvate carboxylase, pyruvate orthophosphate dikinase, NADP-dependent malic enzyme and malate dehydrogenase was higher in leaves of O. coarctata compare to high yielding rice cultivar (IR-29). These anatomical, ultra structural as well as molecular changes in O. coarctata for C4 photosynthesis adaptation might be might be due to its survival in wide diverse condition from aquatic to saline submerged condition. Being in the genus of Oryza , this plant could be potential donor for production of C4 rice in future through conventional breeding, as successful cross with rice has already been reported.