RC
Richard Chen
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
9
h-index:
16
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Global connectivity of the frontoparietal cognitive control network is related to depression symptoms in the general population

Douglas Schultz et al.Sep 6, 2017
ABSTRACT We all vary in our mental health, even among people not meeting diagnostic criteria for mental illness. Understanding this individual variability may reveal factors driving the risk for mental illness, as well as factors driving sub-clinical problems that still adversely affect quality of life. To better understand the large-scale brain network mechanisms underlying this variability we examined the relationship between mental health symptoms and resting-state functional connectivity patterns in cognitive control systems. One such system is the frontoparietal cognitive control network (FPN). Changes in FPN connectivity may impact mental health by disrupting the ability to regulate symptoms in a goal-directed manner. Here we test the hypothesis that FPN dysconnectivity relates to mental health symptoms even among individuals who do not meet formal diagnostic criteria but may exhibit meaningful symptom variation. We found that depression symptoms severity negatively correlated with between-network global connectivity (BGC) of the FPN. This suggests that decreased connectivity between the FPN and the rest of the brain is related to increased depression symptoms in the general population. These findings complement previous clinical studies to support the hypothesis that global FPN connectivity contributes to the regulation of mental health symptoms across both health and disease. AUTHOR SUMMARY Understanding how large-scale network interactions in the brain contribute to (or serve a protective role against) mental health symptoms is an important step toward developing more effective mental health treatments. Here we test the hypothesis that cognitive control networks play an important role in mental health by being highly connected to other brain networks and able to serve as a feedback mechanism capable of regulating symptoms in a goal-directed manner. We found that the more well-connected the frontoparietal cognitive control network was to other networks in the brain the less depression symptoms were reported by participants. These results contribute to our understanding of how brain network interactions are related to mental health symptoms, even in individuals who have not been diagnosed with a disorder.
25

Network modeling of dynamic brain interactions predicts emergence of neural information that supports human cognitive behavior

Ravi Mill et al.Jan 27, 2021
Abstract How cognitive task behavior is generated by brain network interactions is a central question in neuroscience. Answering this question calls for the development of novel analysis tools that can firstly capture neural signatures of task information with high spatial and temporal precision (the “where and when”), and then allow for empirical testing of alternative network models of brain function that link information to behavior (the “how”). We outline a novel network modeling approach suited to this purpose that is applied to non-invasive functional neuroimaging data in humans. We first dynamically decoded the spatiotemporal signatures of task information in the human brain by combining MRI-individualized source electroencephalography with multivariate pattern analysis. A newly developed network modeling approach - dynamic activity flow modeling - then simulated the flow of task-evoked activity over more causally interpretable (relative to standard functional connectivity approaches) resting-state functional connections (dynamic, lagged, direct and directional). We demonstrate the utility of this modeling approach by applying it to elucidate network processes underlying sensory-motor information flow in the brain, revealing accurate predictions of empirical response information dynamics underlying behavior. Extending the model towards simulating network lesions suggested a role for the cognitive control networks (CCNs) as primary drivers of response information flow, transitioning from early dorsal attention network-dominated sensory-to-response transformation to later collaborative CCN engagement during response selection. These results demonstrate the utility of the dynamic activity flow modeling approach in identifying the generative network processes underlying neurocognitive phenomena.
25
Citation2
0
Save
0

Task-related multivariate activation states during task-free rest

Richard Chen et al.Aug 6, 2016
Much of our lives are spent in unconstrained rest states, yet cognitive brain processes are primarily investigated using task-constrained states. It may be possible to utilize the insights gained from experimental control of task processes as reference points for investigating unconstrained rest. To facilitate comparison of rest and task functional MRI (fMRI) data we focused on activation amplitude patterns, commonly used for task but not rest analyses. During rest, we identified spontaneous changes in temporally extended whole-brain activation pattern states. This revealed a hierarchical organization of rest states. The top consisted of two competing states consistent with previously identified "task-positive" and "task-negative" activation patterns. These states were composed of more specific states that repeated over time and across individuals. Contrasting with the view that rest consists of only task-negative states, task-positive states occurred 40% of the time while individuals "rested," suggesting task-focused activity occurs during rest. Further, analysis of task data revealed a similar hierarchical structure of brain states. Together these results suggest brain activation dynamics form a general hierarchy across task and rest, with a small number of dominant general states reflecting basic functional modes and a variety of specific states likely reflecting a rich variety of cognitive processes.
0

Integrating multi-source remote sensing data for mapping boreal forest canopy height and species in interior Alaska in support of radar modeling

Yu-Huan Zhao et al.Jun 10, 2024
Abstract Vegetation information is essential for analyzing aboveground biomass and understanding subsurface characteristics, such as root biomass, soil organic matter, and soil moisture conditions. In this study, we mapped boreal forest canopy height (FCH) and forest species (FS) distributions in the Delta Junction region of interior Alaska, by integrating multi-source remote sensing observations within a machine learning framework based on the extreme gradient boosting technique. Model inputs included multi-frequency (C-/L-/P-band) SAR observations from Sentinel-1, UAVSAR (Uninhabited Aerial Vehicle SAR) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface), and Sentinel-2 optical reflectance data. LVIS (Land Vegetation and Ice Sensor) LiDAR measurements (RH98) and Tanana Valley State Forest timber inventory data were used as respective canopy height and species ground truth data. The combination of multi-source datasets produced the best model performance (RMSE 1.62 m for FCH, and 84.27% overall FS classification accuracy) over other models developed from single source observations. The resulting FCH and FS maps using multi-source datasets were derived at 30 m spatial resolution and showed favorable agreement with plot level field measurements from the Forest Inventory and Analysis record. The model results also captured characteristic differences in stand structure between dominant species and from post-fire vegetation succession. Our results show the potential of multi-source remote sensing observations, including low frequency microwave sensors, for monitoring boreal forest complexity and changes due to global warming.
0

The ABoVE L-band and P-band airborne synthetic aperture radar surveys

Charles Miller et al.Jun 4, 2024
Abstract. Permafrost-affected ecosystems of the Arctic–boreal zone in northwestern North America are undergoing profound transformation due to rapid climate change. NASA's Arctic Boreal Vulnerability Experiment (ABoVE) is investigating characteristics that make these ecosystems vulnerable or resilient to this change. ABoVE employs airborne synthetic aperture radar (SAR) as a powerful tool to characterize tundra, taiga, peatlands, and fens. Here, we present an annotated guide to the L-band and P-band airborne SAR data acquired during the 2017, 2018, 2019, and 2022 ABoVE airborne campaigns. We summarize the ∼80 SAR flight lines and how they fit into the ABoVE experimental design (Miller et al., 2023; https://doi.org/10.3334/ORNLDAAC/2150). The Supplement provides hyperlinks to extensive maps, tables, and every flight plan as well as individual flight lines. We illustrate the interdisciplinary nature of airborne SAR data with examples of preliminary results from ABoVE studies including boreal forest canopy structure from TomoSAR data over Delta Junction, AK, and the Boreal Ecosystem Research and Monitoring Sites (BERMS) area in northern Saskatchewan and active layer thickness and soil moisture data product validation. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band airborne SAR data (https://uavsar.jpl.nasa.gov/cgi-bin/data.pl).