Directly cloning of biosynthetic gene clusters (BGCs) from microbial genomes has been revolutionizing the natural product-based drug discovery. However, it is still very challenging to efficiently clone, for example, large (> 80kb) and GC-rich (> 70%), streptomycete originating BGCs. In this study, we developed a simple, fast yet efficient and low-cost in vitro platform for direct cloning large BGCs from streptomycete genomic DNA, named as CAT-FISHING (CRISPR/Cas12a- and Agarose plug-based sysTem for Fast bIoSyntHetIc geNe cluster cloninG), by combining the advantages of CRISPR/Cas12a cleavage and bacterial artificial chromosome (BAC) library construction. CAT-FISHING was demonstrated by directly cloning large DNA fragments ranging from 47 to 139 kb with GC content of > 70% from the S. albus J1074 genome in a relatively efficient manner. Moreover, surugamides, encoded by a captured 87-kb BGC with GC content of 76%, was heterologously expressed in a Streptomyces chassis. These results indicate that CAT-FISHING is a powerful platform for BGCs batch cloning, which would be greatly beneficial to the natural products-based drug discovery. We believe that this system will lead a renaissance of interest in microorganisms as a source for drug development.