AG
Amin Gholami
Author with expertise in Microarray Data Analysis and Gene Expression Profiling
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2,923
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-fat diet alters gut microbiota physiology in mice

Hannelore Daniel et al.Sep 12, 2013
Abstract The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.
0
Citation607
0
Save
0

Global Proteome Analysis of the NCI-60 Cell Line Panel

Amin Gholami et al.Aug 1, 2013
The NCI-60 cell line collection is a very widely used panel for the study of cellular mechanisms of cancer in general and in vitro drug action in particular. It is a model system for the tissue types and genetic diversity of human cancers and has been extensively molecularly characterized. Here, we present a quantitative proteome and kinome profile of the NCI-60 panel covering, in total, 10,350 proteins (including 375 protein kinases) and including a core cancer proteome of 5,578 proteins that were consistently quantified across all tissue types. Bioinformatic analysis revealed strong cell line clusters according to tissue type and disclosed hundreds of differentially regulated proteins representing potential biomarkers for numerous tumor properties. Integration with public transcriptome data showed considerable similarity between mRNA and protein expression. Modeling of proteome and drug-response profiles for 108 FDA-approved drugs identified known and potential protein markers for drug sensitivity and resistance. To enable community access to this unique resource, we incorporated it into a public database for comparative and integrative analysis (http://wzw.tum.de/proteomics/nci60).
0
Citation296
0
Save
0

A multivariate approach to the integration of multi-omics datasets

Chen Meng et al.May 29, 2014
To leverage the potential of multi-omics studies, exploratory data analysis methods that provide systematic integration and comparison of multiple layers of omics information are required. We describe multiple co-inertia analysis (MCIA), an exploratory data analysis method that identifies co-relationships between multiple high dimensional datasets. Based on a covariance optimization criterion, MCIA simultaneously projects several datasets into the same dimensional space, transforming diverse sets of features onto the same scale, to extract the most variant from each dataset and facilitate biological interpretation and pathway analysis. We demonstrate integration of multiple layers of information using MCIA, applied to two typical "omics" research scenarios. The integration of transcriptome and proteome profiles of cells in the NCI-60 cancer cell line panel revealed distinct, complementary features, which together increased the coverage and power of pathway analysis. Our analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that was not highly ranked in the analysis of any individual dataset. Secondly, we compared transcriptome profiles of high grade serous ovarian tumors that were obtained, on two different microarray platforms and next generation RNA-sequencing, to identify the most informative platform and extract robust biomarkers of molecular subtypes. We discovered that the variance of RNA-sequencing data processed using RPKM had greater variance than that with MapSplice and RSEM. We provided novel markers highly associated to tumor molecular subtype combined from four data platforms. MCIA is implemented and available in the R/Bioconductor "omicade4" package. We believe MCIA is an attractive method for data integration and visualization of several datasets of multi-omics features observed on the same set of individuals. The method is not dependent on feature annotation, and thus it can extract important features even when there are not present across all datasets. MCIA provides simple graphical representations for the identification of relationships between large datasets.
0
Citation268
0
Save
0

MOGSA: integrative single sample gene-set analysis of multiple omics data

Chen Meng et al.Apr 3, 2016
Gene set analysis (GSA) summarizes individual molecular measurements to more interpretable pathways or gene sets and has become an indispensable step in the interpretation of large scale omics data. However, GSA methods are limited to the analysis of single omics data. Here, we introduce a new computation method termed multi-omics gene set analysis (MOGSA), a multivariate single sample gene-set analysis method that integrates multiple experimental and molecular data types measured over the same set of samples. The method learns a low dimensional representation of most variant correlated features (genes, proteins, etc.) across multiple omics data sets, transforms the features onto the same scale and calculates an integrated gene set score from the most informative features in each data type. MOGSA does not require filtering data to the intersection of features (gene IDs), therefore, all molecular features, including those that lack annotation may be included in the analysis. We demonstrate that integrating multiple diverse sources of molecular data increases the power to discover subtle changes in gene-sets and may reduce the impact of unreliable information in any single data type. Using simulated data, we show that integrative analysis with MOGSA outperforms other single sample GSA methods. We applied MOGSA to three studies with experimental data. First, we used NCI60 transcriptome and proteome data to demonstrate the benefit of removing a source of noise in the omics data. Second, we discovered similarities and differences in mRNA, protein and phosphorylation profiles of induced pluripotent and embryonic stem cell lines. We demonstrate how to assess the influence of each data type or feature to a MOGSA gene set score. Finally, we report that three molecular subtypes are robustly discovered when copy number variation and mRNA profiling data of 308 bladder cancers from The Cancer Genome Atlas are integrated using MOGSA. MOGSA is available in the Bioconductor R package "mogsa".