JG
Jesper Gromada
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(93% Open Access)
Cited by:
7,114
h-index:
71
/
i10-index:
150
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells

Helga Ellingsgaard et al.Oct 30, 2011
Helga Ellingsgaard et al. show that secretion of interleukin-6 by muscle in response to exercise, or injection of recombinant protein, increases the expression of the incretin GLP-1 by both intestinal cells and by pancreatic alpha cells, thus potentiating insulin release and improving glycemic control. These results identify a new endocrine loop linking energy demands to homeostatic control while also suggesting further targets for type 2 diabetes therapy. Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes.
0

A Protein-TruncatingHSD17B13Variant and Protection from Chronic Liver Disease

Noura Abul‐Husn et al.Mar 21, 2018
Elucidation of the genetic factors underlying chronic liver disease may reveal new therapeutic targets.We used exome sequence data and electronic health records from 46,544 participants in the DiscovEHR human genetics study to identify genetic variants associated with serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Variants that were replicated in three additional cohorts (12,527 persons) were evaluated for association with clinical diagnoses of chronic liver disease in DiscovEHR study participants and two independent cohorts (total of 37,173 persons) and with histopathological severity of liver disease in 2391 human liver samples.A splice variant (rs72613567:TA) in HSD17B13, encoding the hepatic lipid droplet protein hydroxysteroid 17-beta dehydrogenase 13, was associated with reduced levels of ALT (P=4.2×10-12) and AST (P=6.2×10-10). Among DiscovEHR study participants, this variant was associated with a reduced risk of alcoholic liver disease (by 42% [95% confidence interval {CI}, 20 to 58] among heterozygotes and by 53% [95% CI, 3 to 77] among homozygotes), nonalcoholic liver disease (by 17% [95% CI, 8 to 25] among heterozygotes and by 30% [95% CI, 13 to 43] among homozygotes), alcoholic cirrhosis (by 42% [95% CI, 14 to 61] among heterozygotes and by 73% [95% CI, 15 to 91] among homozygotes), and nonalcoholic cirrhosis (by 26% [95% CI, 7 to 40] among heterozygotes and by 49% [95% CI, 15 to 69] among homozygotes). Associations were confirmed in two independent cohorts. The rs72613567:TA variant was associated with a reduced risk of nonalcoholic steatohepatitis, but not steatosis, in human liver samples. The rs72613567:TA variant mitigated liver injury associated with the risk-increasing PNPLA3 p.I148M allele and resulted in an unstable and truncated protein with reduced enzymatic activity.A loss-of-function variant in HSD17B13 was associated with a reduced risk of chronic liver disease and of progression from steatosis to steatohepatitis. (Funded by Regeneron Pharmaceuticals and others.).
0

Fibroblast Growth Factor-21 Improves Pancreatic β-Cell Function and Survival by Activation of Extracellular Signal–Regulated Kinase 1/2 and Akt Signaling Pathways

Wolf Wente et al.Aug 25, 2006
Fibroblast growth factor-21 (FGF-21) is a recently discovered metabolic regulator. Here, we investigated the effects of FGF-21 in the pancreatic β-cell. In rat islets and INS-1E cells, FGF-21 activated extracellular signal–regulated kinase 1/2 and Akt signaling pathways. In islets isolated from healthy rats, FGF-21 increased insulin mRNA and protein levels but did not potentiate glucose-induced insulin secretion. Islets and INS-1E cells treated with FGF-21 were partially protected from glucolipotoxicity and cytokine-induced apoptosis. In islets isolated from diabetic rodents, FGF-21 treatment increased islet insulin content and glucose-induced insulin secretion. Short-term treatment of normal or db/db mice with FGF-21 lowered plasma levels of insulin and improved glucose clearance compared with vehicle after oral glucose tolerance testing. Constant infusion of FGF-21 for 8 weeks in db/db mice nearly normalized fed blood glucose levels and increased plasma insulin levels. Immunohistochemistry of pancreata from db/db mice showed a substantial increase in the intensity of insulin staining in islets from FGF-21–treated animals as well as a higher number of islets per pancreas section and of insulin-positive cells per islet compared with control. No effect of FGF-21 was observed on islet cell proliferation. In conclusion, preservation of β-cell function and survival by FGF-21 may contribute to the beneficial effects of this protein on glucose homeostasis observed in diabetic animals.
0
Citation468
0
Save
0

Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway

Mary Chau et al.Jun 28, 2010
Fibroblast growth factor 21 (FGF21) has been identified as a potent metabolic regulator. Administration of recombinant FGF21 protein to rodents and rhesus monkeys with diet-induced or genetic obesity and diabetes exerts strong antihyperglycemic and triglyceride-lowering effects and reduction of body weight. Despite the importance of FGF21 in the regulation of glucose, lipid, and energy homeostasis, the mechanisms by which FGF21 functions as a metabolic regulator remain largely unknown. Here we demonstrate that FGF21 regulates energy homeostasis in adipocytes through activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), resulting in enhanced mitochondrial oxidative function. AMPK phosphorylation levels were increased by FGF21 treatment in adipocytes as well as in white adipose tissue from ob/ob mice. FGF21 treatment increased cellular NAD + levels, leading to activation of SIRT1 and deacetylation of its downstream targets, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and histone 3. Activation of AMPK and SIRT1 by FGF21 in adipocytes enhanced mitochondrial oxidative capacity as demonstrated by increases in oxygen consumption, citrate synthase activity, and induction of key metabolic genes. The effects of FGF21 on mitochondrial function require serine/threonine kinase 11 (STK11/LKB1), which activates AMPK. Inhibition of AMPK, SIRT1, and PGC-1α activities attenuated the effects of FGF21 on oxygen consumption and gene expression, indicating that FGF21 regulates mitochondrial activity and enhances oxidative capacity through an AMPK–SIRT1–PGC1α–dependent mechanism in adipocytes.
0

Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis

Ēriks Šmagris et al.Jun 10, 2014
A sequence polymorphism (rs738409, I148M) in patatin‐like phospholipid domain containing protein 3 ( PNPLA3 ) is strongly associated with nonalcoholic fatty liver disease (NAFLD), but the mechanistic basis for this association remains enigmatic. Neither ablation nor overexpression of wild‐type PNPLA3 affects liver fat content in mice, whereas hepatic overexpression of the human 148M transgene causes steatosis. To determine whether the 148M allele causes fat accumulation in the liver when expressed at physiological levels, we introduced a methionine codon at position 148 of the mouse Pnpla3 gene. Knockin mice had normal levels of hepatic fat on a chow diet, but when challenged with a high‐sucrose diet their liver fat levels increased 2 to 3‐fold compared to wild‐type littermates without any associated changes in glucose homeostasis. The increased liver fat in the knockin mice was accompanied by a 40‐fold increase in PNPLA3 on hepatic lipid droplets, with no increase in hepatic PNPLA3 messenger RNA (mRNA). Similar results were obtained when the catalytic dyad of PNPLA3 was inactivated by substituting the catalytic serine with alanine (S47A). Conclusion : These data provide the first direct evidence that physiological expression of PNPLA3 148M variant causes NAFLD, and that the accumulation of catalytically inactive PNPLA3 on the surfaces of lipid droplets is associated with the accumulation of TG in the liver. (H epatology 2015;61:108–118)
Load More