DS
Diana Smith
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
9
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
28

FEMA: Fast and efficient mixed-effects algorithm for large sample whole-brain imaging data

Pravesh Parekh et al.Oct 28, 2021
+14
O
C
P
Abstract The linear mixed-effects model (LME) is a versatile approach to account for dependence among observations. Many large-scale neuroimaging datasets with complex designs have increased the need for LME, however LME has seldom been used in whole-brain imaging analyses due to its heavy computational requirements. In this paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large samples possible. We validate FEMA with extensive simulations, showing that the estimates of the fixed effects are equivalent to standard maximum likelihood estimates but obtained with orders of magnitude improvement in computational speed. We demonstrate the applicability of FEMA by studying the cross-sectional and longitudinal effects of age on region-of-interest level and vertex-wise cortical thickness, as well as connectome-wide functional connectivity values derived from resting state functional MRI, using longitudinal imaging data from the Adolescent Brain Cognitive Development SM Study release 4.0. Our analyses reveal distinct spatial patterns for the annualized changes in vertex-wise cortical thickness and connectome-wide connectivity values in early adolescence, highlighting a critical time of brain maturation. The simulations and application to real data show that FEMA enables advanced investigation of the relationships between large numbers of neuroimaging metrics and variables of interest while considering complex study designs, including repeated measures and family structures, in a fast and efficient manner. The source code for FEMA is available via: https://github.com/cmig-research-group/cmig_tools/ .
0

Sex and mental health are related to subcortical brain microstructure

Diliana Pecheva et al.Jul 23, 2024
+4
B
D
D
Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.
1

Partitioning variance in cortical morphometry into genetic, environmental, and subject-specific components

Diana Smith et al.Jul 19, 2023
+6
J
P
D
Abstract The relative contributions of genetic variation and experience in shaping the morphology of the adolescent brain are not fully understood. Using longitudinal data from 11,665 subjects in the ABCD Study ® , we fit vertex-wise variance components including family effects, genetic effects, and subject-level effects using a computationally efficient framework. Variance in cortical thickness and surface area is largely attributable to genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using data from cortical regions. We discuss the biological importance of subject-specific variance and its implications for environmental influences on cortical development and maturation.
1

Heritability estimation of cognitive phenotypes in the ABCD Study®using mixed models

Diana Smith et al.Oct 31, 2022
+7
W
O
D
Abstract Twin and family studies have historically aimed to partition phenotypic variance into components corresponding to additive genetic effects ( A ), common environment ( C ), and unique environment ( E ). Here we present the ACE Model and several extensions in the Adolescent Brain Cognitive Development Study (ABCD Study ® ), employed using the new Fast Efficient Mixed Effects Analysis (FEMA) package. In the twin sub-sample ( n = 924; 462 twin pairs), heritability estimates were similar to those reported by prior studies for height (twin heritability = 0.86) and cognition (twin heritability between 0.00 and 0.61), respectively. Incorporating SNP-derived genetic relatedness and using the full ABCD Study ® sample ( n = 9,742) led to narrower confidence intervals for all parameter estimates. By leveraging the sparse clustering method used by FEMA to handle genetic relatedness only for participants within families, we were able to take advantage of the diverse distribution of genetic relatedness within the ABCD Study ® sample.
0

Partitioning variance in cortical morphometry into genetic, environmental, and subject-specific components

Diana Smith et al.Jun 1, 2024
+6
J
P
D
The relative contributions of genetic variation and experience in shaping the morphology of the adolescent brain are not fully understood. Using longitudinal data from 11,665 subjects in the ABCD Study, we fit vertex-wise variance components including family effects, genetic effects, and subject-level effects using a computationally efficient framework. Variance in cortical thickness and surface area is largely attributable to genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using data from cortical regions. We discuss the biological importance of subject-specific variance and its implications for environmental influences on cortical development and maturation.