TR
Tijana Rio
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
4,726
h-index:
40
/
i10-index:
137
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Defining the core Arabidopsis thaliana root microbiome

Derek Lundberg et al.Jul 31, 2012
+13
S
S
D
Sequencing of the Arabidopsis thaliana root microbiome shows that its composition is strongly influenced by location, inside or outside the root, and by soil type. The association between a land plant and the soil microbes of the root microbiome is important for the plant's well-being. A deeper understanding of these microbial communities will offer opportunities to control plant growth and susceptibility to pathogens, particularly in sustainable agricultural regimes. Two groups, working separately but developing best-practice protocols in parallel, have characterized the root microbiota of the model plant Arabidopis thaliana. Working on two continents and with five different soil types, they reach similar general conclusions. The bacterial communities in each root compartment — the rhizosphere immediately surrounding the root and the endophytic compartment within the root — are most strongly influenced by soil type, and to a lesser degree by host genotype. In natural soils, Arabidopsis plants are preferentially colonized by Actinobacteria, Proteobacteria, Bacteroidetes and Chloroflexi species. And — an important point for future work — Arabidopsis root selectivity for soil bacteria under controlled environmental conditions mimics that of plants grown in a natural environment. Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1,2,3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plant–microbe interactions derived from complex soil communities.
0
Citation2,436
0
Save
0

Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa

Sarah Lebeis et al.Jul 17, 2015
+8
D
S
S
Immune signals shape root communities To thwart microbial pathogens aboveground, the plant Arabidopsis turns on defensive signaling using salicylic acid. In Arabidopsis plants with modified immune systems, Lebeis et al. show that bacterial communities change in response to salicylic acid signaling in the root zone as well (see the Perspective by Haney and Ausubel). Abundance of some root-colonizing bacterial families increased at the expense of others, partly as a function of whether salicylic acid was used as an immune signal or as a carbon source for microbial growth. Science , this issue p. 860 ; see also p. 788
0
Citation1,004
0
Save
0

Host genotype and age shape the leaf and root microbiomes of a wild perennial plant

Maggie Wagner et al.Jul 12, 2016
+3
T
D
M
Abstract Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant’s genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome is evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.
0
Citation804
0
Save
0

Large-scale replicated field study of maize rhizosphere identifies heritable microbes

William Walters et al.Jun 25, 2018
+13
J
A
W
Significance In this very large-scale longitudinal field study of the maize rhizosphere microbiome, we identify heritable taxa. These taxa display variance in their relative abundances that can be partially explained by genetic differences between the maize lines, above and beyond the strong influences of field, plant age, and weather on the diversity of the rhizosphere microbiome. If these heritable taxa are associated with beneficial traits, they may serve as phenotypes in future breeding endeavors.
0
Citation469
0
Save
0

Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes

Shaomei He et al.Jun 14, 2017
+5
L
S
S
ABSTRACT Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions, and greatly expand the known genomic diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as (poly)saccharide-degraders in freshwater, uncovered interesting genomic features for this life style, and suggested their adaptation to nutrient availabilities in their environments. Between the two lakes, Verrucomicrobia populations differ significantly in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially-derived allochthonous carbon sources of the two ecosystems respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humic-rich environment. Notably, most epilimnion genomes have large numbers of so-called “Planctomycete-specific” cytochrome c -containing genes, which exhibited nearly opposite distribution patterns with glycoside hydrolase genes, probably associated with the different environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes are a major step towards understanding the role, ecophysiology and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia are cosmopolitan in lakes and rivers, yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia are restricted to one subdivision of this phylum. Here, we greatly expand the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia as potential (poly)saccharide-degraders, and suggested their adaptation to carbon source of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called “Planctomycete-specific” cytochrome c -containing genes, and found their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling.
0
Citation6
0
Save
2

Identification of beneficial and detrimental bacteria that impact sorghum responses to drought using multi-scale and multi-system microbiome comparisons

Mingsheng Qi et al.Apr 14, 2021
+13
K
J
M
Abstract Background Drought is a major abiotic stress that limits agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere and may lead to enrichment of specific groups of microbes, such as Actinobacteria . How these changes ultimately affect plant health is not well understood. In parallel, model systems have been used to tease apart the specific interactions between plants and single, or small groups of microbes. However, translating this work into crop species and achieving increased crop yields within noisy field settings remains a challenge. Thus, the next scientific leap forward in microbiome research must cross the great lab-to-field divide. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key beneficial and detrimental, root associated microbes that robustly affect drought stressed plant phenotypes. Results Fifty-three bacterial strains, originally characterized for association with Arabidopsis , were applied to sorghum seeds and their effect on root growth was monitored for seven days. Two Arthrobacter strains, members of the Actinobacteria phylum, caused root growth inhibition (RGI) in Arabidopsis and sorghum. In the context of synthetic communities, strains of Variovorax were able to protect both Arabidopsis and sorghum from the RGI caused by Arthrobacter . As a transitional system, we tested the synthetic communities through a 24-day high-throughput sorghum phenotyping assay and found that during drought stress, plants colonized by Arthrobacter were significantly smaller and had reduced leaf water content as compared to control plants. However, plants colonized by both Arthrobacter and Variovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across well-watered and drought conditions. Drought responsive microbes were identified, including an enrichment in Actinobacteria , consistent with previous findings. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a newly developed method and were then able to observe that the abundance of Arthrobacter strains negatively correlated with plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list of high confidence bacterial taxa that positively associated with plant growth under drought stress. Conclusions A three-tiered experimental system connected reductionist and ecological approaches and identified beneficial and deleterious bacterial strains for sorghum under drought stress.
2
Citation6
0
Save
0

Phototrophic co-cultures from extreme environments: community structure and potential value for fundamental and applied research

Claire Shaw et al.Oct 3, 2018
+10
E
C
C
ABSTRACT Cyanobacteria are found in most illuminated environments and are key players in global carbon and nitrogen cycling. Although significant efforts have been made to advance our understanding of this important phylum, still little is known about how members of the cyanobacteria affect and respond to changes in complex biological systems. This lack of knowledge is in part due to our dependence on pure cultures when determining the metabolism and function of a microorganism. In the work presented here we took advantage of the Culture Collection of Microorganisms from Extreme Environments (CCMEE), a collection of more than 1,000 publicly available photosynthetic co-cultures now maintained at the Pacific Northwest National Laboratory. To highlight some of their scientific potential, we selected 26 of these photosynthetic co-cultures from the CCMEE for 16S rRNA gene sequencing. We assessed if samples readily available from the CCMEE could be used to generate new insights into the role of microbial communities in global and local carbon and nitrogen cycling. Results from this work support the existing notion that culture depositories in general hold the potential to advance fundamental and applied research. If collections of co-cultures can be used to infer roles of the individual organisms remains to be seen and requires further investigation.
0
Citation1
0
Save
0

Diversity and Distribution of a Novel Genus of Hyperthermophilic Aquificae Viruses Encoding a Proof-reading Family-A DNA Polymerase

Marike Palmer et al.Feb 28, 2020
+11
S
B
M
Despite the high abundance of Aquificae in many geothermal systems, these bacteria are difficult to culture and no viruses infecting members of this phylum have been isolated. Here, we describe the complete, circular dsDNA Uncultivated Virus Genome (UViG) of Thermocrinis Octopus Spring virus (TOSV), derived from metagenomic data, along with eight related UViGs representing three additional species, Thermocrinis Great Boiling Spring virus (TGBSV), Aquificae Joseph's Coat Spring Virus (AJCSV), and Aquificae Conch Spring Virus (ACSV). Four near-complete UViGs, ranged from 37,256 bp to 41,208 bp and encoded 48 to 53 open reading frames. Despite low overall similarity between viruses from different hot springs, the genomes shared a high degree of synteny, and encoded numerous genes for nucleotide metabolism, including a polyprotein PolA-type polymerase with likely accessory functions, a DNA Pol III beta subunit (sliding clamp), a thymidylate kinase, a DNA gyrase, a helicase, and a DNA methylase. Also present were conserved genes predicted to code for phage capsids, large and small terminases, portal protein, holin, and lytic transglycosylase, all consistent with a distant relatedness to cultivated Caudovirales. TOSV and TGBSV had the highest coverage in their respective metagenomes and are predicted to infect Thermocrinis ruber and Thermocrinis jamiesonii, respectively, as multiple CRISPR spacers matching the viral genomes were identified within Thermocrinis ruber OC1/4T and Thermocrinis jamiesonii GBS1T. Based on the predicted, unusual bi-directional replication strategy, low sequence similarity to known viral genomes, and a unique position in gene-sharing networks, we propose a new putative genus, Pyrovirus, in the order Caudovirales.
11

Heritability and host genomic determinants of switchgrass root-associated microbiota in field sites spanning its natural range

Joseph Edwards et al.Jun 9, 2022
+12
J
J
J
ABSTRACT A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here we characterized the root microbiota of a large population of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of >2000 samples, suggest field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, we find that relatively few highly prevalent bacterial taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit / filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e. microbes in >80% of samples) regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.
11
0
Save
30

Highly diverse and unknown viruses may enhance Antarctic endoliths’ adaptability

Cassandra Ettinger et al.Dec 3, 2022
+9
L
M
C
Abstract Rock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology. Here, we performed metagenomic analyses on rocks from across Antarctica comprising >75,000 viral operational taxonomic units (vOTUS). We found largely undescribed, highly diverse and spatially structured virus communities potentially influencing bacterial adaptation and biogeochemistry. This catalog lays the foundation for expanding knowledge of the virosphere in extreme environments.
Load More