YB
Yun‐Juan Bao
Author with expertise in Global Burden of Group A Streptococcal Diseases
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
3
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

The genetic variation landscape of African swine fever virus reveals frequent positive selection and adaptive flexibility

Yun‐Juan Bao et al.Aug 14, 2020
Abstract African swine fever virus (ASFV) is a lethal disease agent that causes high mortality in swine population and devastating loss in swine industries. The development of efficacious vaccines has been hindered by the gap in knowledge concerning genetic variation of ASFV and the genetic factors involved in host adaptation and virus-host interactions. In this study, we performed a meta-genetic study of ASFV aiming to profile the variation landscape and identify genetic factors with signatures of positive selection and relevance to host adaptation. Our data reveals a high level of genetic variability of ASFV shaped by both diversifying selection and selective sweep. The selection signatures are widely distributed across the genome with the diversifying selection falling within 29 genes and selection sweep within 25 genes, highlighting strong signals of adaptive evolution of ASFV. Further examination of the sequence properties reveals the link of the selection signatures with virus-host interactions and adaptive flexibility. Specifically, we discovered a site at 157th of the key antigen protein EP402R under diversifying selection, which is located in the cytotoxic T-cell epitope related with the low level of cross-reaction in T-cell response. Importantly, two multigene families MGF360 and MGF505, the host range factors of ASFV, exhibit divergent selection among the paralogous members, conferring sequence pools for genetic diversification and adaptive capability. By integrating the genes with selection signatures into a unified framework of interactions between ASFV and hosts, we showed that the genes are involved in multiple processes of host immune interaction and virus life cycles, and may play crucial roles in circumventing host defense systems and enhancing adaptive fitness. Our findings will allow enhanced understanding of genetic basis of rapid spreading and adaptation of ASFV among the hosts.
2
Citation3
0
Save
1

Group A Streptococcus remains viable inside fibrin clots and gains access to human plasminogen for subsequent fibrinolysis and dissemination

Henry Vu et al.Oct 4, 2023
Abstract Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes a wide spectrum of illnesses ranging from pharyngitis and rheumatic fever to more invasive and severe diseases such as necrotizing fasciitis and toxic shock syndrome. Invasive outcomes of GAS infections often result from entry of the bacteria via an open wound into tissue and blood systems. The coagulation cascade serves as an innate defense mechanism that initiates fibrin clots to sequester bacteria and restrict its growth and prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize the specific virulence factors Plasminogen binding M-protein (PAM) and streptokinase (SK) to manipulate hemostasis and ultimately activate human plasminogen to cause fibrinolysis and escape from the fibrin clot. A major unresolved question regarding this process is to understand the temporal dynamics of how GAS that is enmeshed in a fibrin clot accesses host plasminogen for dissolution of the clot and eventual dissemination. Using fluorescently labeled plasminogen and fibrinogen, we established conditions to observe the process of fibrin clot dissolution by GAS (an AP53 CovR+S-strain) that is sequestered in a fibrin clot using real-time imaging microscopy. We hypothesized that initiation of fibrinolysis by GAS inside a fibrin clot would be determined by the rate of hPg access into the fibrin clot where bacteria are trapped. Our live imaging studies show that GAS trapped inside a fibrin clot, has limited access to hPg; however, at 4.25 h post incubation, when sufficient hPg is accessible to the bacterium, fibrinolysis quickly occurs. If hPg is bound to the bacterial surface prior to being trapped inside a clot, dissolution and bacterial dissemination occurs at a much faster rate of 2.5 h post incubation. During the time which bacteria are trapped in the clot without access to hPg, we did not observe any growth of GAS; however, we demonstrate that the bacteria continue to remain viable inside the fibrin clot. We performed RNA-seq analysis of GAS and the isogenic GAS SK-deficient mutant to understand SK-dependent transcriptional changes during the lag-phase of the GAS bacteria inside the fibrin clot. We observed a dramatic change in the transcription profile of wt GAS inside the fibrin clot over time prior to escape from the fibrin clot (22 gene expression changes at 4h, to 802 gene expression changes at 8h). Furthermore, we also identified gene expression changes that were distinct between wt GAS and the GAS SK-deficient mutant. Our findings reveal for the first time that GAS can engage a latent, growth suspended phase whereby physical structures such as fibrin clots and Neutrophil extracellular traps that immobilize an invading pathogen allow bacteria to remain viable and transcriptionally active for an extended time during host infection. GAS that is trapped in a fibrin clot will therefore enter a state in which the bacteria suspend growth, but remain viable, until sufficient access to hPg allow it to initiate fibrinolysis and escape into surrounding tissues. The viability of GAS while trapped and its readiness to avoid immune defenses allow GAS to act quickly to disseminate when host conditions are more favorable for the bacteria.
0

Discovery of genes encoding a Streptolysin S-like toxin biosynthetic cluster in a select highly pathogenic methicillin resistant Staphylococcus aureus JKD6159 strain

Trevor Kane et al.Aug 31, 2019
Background: Staphylococcus aureus (S. aureus) is a major human pathogen owing to its arsenal of virulence factors, as well as its acquisition of multi-antibiotic resistance. Here we report the identification of a Streptolysin S (SLS) like biosynthetic gene cluster in a highly virulent community-acquired methicillin resistant S. aureus (MRSA) isolate, JKD6159. Examination of the SLS-like gene cluster in JKD6159 shows significant homology and gene organization to the SLS-associated biosynthetic gene (sag) cluster responsible for the production of the major hemolysin SLS in Group A Streptococcus. Results: We took a comprehensive approach to elucidating the putative role of the sag gene cluster in JKD6159 by constructing a mutant in which one of the biosynthesis genes (sagB homologue) was deleted in the parent JKD6159 strain. Assays to evaluate bacterial gene regulation, biofilm formation, antimicrobial activity, as well as complete host cell response profile and comparative in vivo infections were conducted. Conclusions: Although no significant phenotypic changes were observed in our assays, we postulate that the SLS-like toxin produced by this strain of S. aureus may be a highly specialized virulence factor utilized in specific environments for selective advantage; studies to better understand the role of this newly discovered virulence factor in S. aureus warrant further investigation.
1

SweepCluster: A SNP clustering tool for detecting gene-specific sweeps in prokaryotes

Junhui Qiu et al.Mar 12, 2021
Abstract Background The gene-specific sweep is a selection process where an advantageous mutation along with the nearby neutral sites in a gene region increases the frequency in the population. It has been demonstrated to play important roles in ecological differentiation or phenotypic divergence in microbial populations. Therefore, identifying gene-specific sweeps in microorganisms will not only provide insights into the evolutionary mechanisms, but also unravel potential genetic markers associated with biological phenotypes. However, current methods were mainly developed for detecting selective sweeps in eukaryotic data of sparse genotypes and are not readily applicable to prokaryotic data. Furthermore, some challenges have not been sufficiently addressed by the methods, such as the low spatial resolution of sweep regions and lack of consideration of the spatial distribution of mutations. Results We proposed a novel gene-centric and spatial-aware approach for identifying gene-specific sweeps in prokaryotes and implemented it in a python tool SweepCluster. Our method searches for gene regions with a high level of spatial clustering of pre-selected polymorphisms in genotype datasets assuming a null distribution model of neutral selection. The pre-selection of polymorphisms is based on their genetic signatures, such as elevated population subdivision, excessive linkage disequilibrium, or significant phenotype association. Performance evaluation using simulation data showed that the accuracy and sensitivity of the clustering algorithm in SweepCluster is above 90%. The application of SweepCluster in two real datasets from the bacteria Streptococcus pyogenes and Streptococcus suis showed that the impact of pre-selection was dramatic and significantly reduced the uninformative signals. We validated our method using the genotype data from Vibrio cyclitrophicus , the only available dataset of gene-specific sweeps in bacteria, and obtained a concordance rate of 78%. We noted that the concordance rate could be underestimated due to distinct reference genomes and clustering strategies. The application to the human genotype datasets showed that SweepCluster is also applicable to eukaryotic data and recovered the known sweep regions in a wide dynamic range of pre-selection parameters. Conclusions SweepCluster is applicable to a broad category of datasets. It will be valuable for detecting gene-specific sweeps in diverse genotypic data and provide novel insights on adaptive evolution.