PY
Patrick Ye
Author with expertise in Focused Ultrasound Technology and Applications
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Physical mechanisms of ultrasonic neurostimulation of the retina

Mike Menz et al.Dec 11, 2017
Focused ultrasound has been shown to be effective at stimulating neurons in vivo, ex vivo and in vitro preparations. Ultrasonic neuromodulation is the only non-invasive method of stimulation that could reach deep in the brain with high spatial-temporal resolution, and thus has potential for use in clinical applications and basic studies of the nervous system. Understanding the physical mechanism by which energy in a high acoustic frequency wave is delivered to stimulate neurons will be important to optimize this technology. Two primary candidates for a physical mechanism are radiation force, the delivery of momentum by the acoustic wave, and cavitation, oscillating gas bubbles. We imaged the isolated salamander retina during ultrasonic stimuli that drive ganglion cell activity and observed micron scale displacements consistent with radiation force. We recorded ganglion cell spiking activity with a planar multielectrode array and changed the acoustic carrier frequency across a broad range (0.5 - 43 MHz), finding that increased stimulation occurs at higher acoustic frequencies, a result that is consistent with radiation force but not cavitation. A quantitative radiation force model can explain retinal responses, and could potentially explain previous in vivo results in the mouse, suggesting a new hypothesis to be tested in vivo. Finally, we found that neural activity was strongly modulated by the distance between the transducer and the electrode array showing the influence of standing waves on the response. We conclude that radiation force is the physical mechanism underlying ultrasonic neurostimulation in the ex vivo retina, and that the control of standing waves is a new potential method to modulate these effects.
0

Transcranial ultrasound selectively biases decision-making in primates

Jan Kubanek et al.Dec 3, 2018
Transcranial focused ultrasound has the promise to evolve into a transformative noninvasive way to modulate activity of neuronal circuits deep in the brain. The approach may enable systematic and causal mapping of how individual brain circuits are involved in specific behaviors and behavioral disorders. Previous studies demonstrated neuromodulatory po- tential, but the effect polarity, size, and spatial specificity have been difficult to assess. Here, we engaged non-human primates (macaca mulatta) in an established task that provides a well defined framework to characterize the neuromodulatory effects. In this task, subjects decide whether to look at a right or a left target, guided by one the targets appearing first. Previous studies showed that excitation/inhibition of oculomotor circuits leads to contralateral/ipsilateral biases in this choice behavior. We found that brief, low-intensity ultrasound stimuli (300 ms, 0.6 MPa, 270 kHz) delivered to the animals' left/right frontal eye fields bias the animals' decisions to the right/left visual hemifield. The effect was modest, about on the order of that produced when injecting moderate amounts of potent neuromodulatory drugs into the same regions in this task. The polarity of the effects suggested a neuronal excitation within the stimulated regions. No effects were observed when we applied the same stimuli to control brain regions not involved in oculomotor target selection. Together, using an established paradigm, we found that transcranial ultrasound is capable of modulating neurons to the extent of biasing choice behavior of non-human primates. A demonstration of tangible, brain-region-specific effects on behavior of primates constitutes a critical step toward applying this noninvasive neuromodulation method in investigations of how specific neural circuits are involved in specific behaviors or disease signs.