PH
P. Hiesinger
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(50% Open Access)
Cited by:
1,586
h-index:
39
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The BDGP Gene Disruption Project

Hugo Bellen et al.Jun 1, 2004
Abstract The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in &gt;30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7140 lines. It now includes individual lines predicted to disrupt 5362 of the 13,666 currently annotated Drosophila genes (39%). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene misexpression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.
0
Citation842
0
Save
0

Three-dimensional reconstruction of the antennal lobe inDrosophila melanogaster

Pierre Laissue et al.Mar 22, 1999
We present the first three-dimensional map of the antennal lobe of Drosophila melanogaster, based on confocal microscopic analysis of glomeruli stained with the neuropil-specific monoclonal antibody nc82. The analysis of confocal stacks allowed us to identify glomeruli according to the criteria shape, size, position, and intensity of antibody labeling. Forty glomeruli were labeled by nc82, eight of which have not been described before. Three glomeruli previously shown exclusively by backfills were not discernible in nc82 stainings. We distinguish three classes of glomeruli: (1) "landmark" glomeruli that are constant in all four criteria mentioned above, (2) less well-demarcated glomeruli that deviate in a single criterion, and (3) poorly defined glomeruli that vary in more than one criterion. All class 2 and 3 glomeruli can be identified by comparison with landmark neighbors. To further aid identification, our model assigns glomeruli to five arrays, each of which is defined by a prominent landmark glomerulus. Six glomeruli consist of distinct, but contiguous structural units, termed "compartments." Glomerular variability observed occasionally between males and females is in the same range as between individuals of the same sex, suggesting the lack of a significant sexual dimorphism in the glomerular pattern. We compare the new model with a previous map and address its potential for mapping activity and expression patterns. An important goal of this work was to create three-dimensional reference models of the antennal lobe, which are accessible on-line. J. Comp. Neurol. 405:543–552, 1999. © 1999 Wiley-Liss, Inc.
0
Citation426
0
Save
0

Thirty-One Flavors of Drosophila Rab Proteins

Jun Zhang et al.Apr 5, 2007
Rab proteins are small GTPases that play important roles in transport of vesicle cargo and recruitment, association of motor and other proteins with vesicles, and docking and fusion of vesicles at defined locations. In vertebrates, >75 Rab genes have been identified, some of which have been intensively studied for their roles in endosome and synaptic vesicle trafficking. Recent studies of the functions of certain Rab proteins have revealed specific roles in mediating developmental signal transduction. We have begun a systematic genetic study of the 33 Rab genes in Drosophila. Most of the fly proteins are clearly related to specific vertebrate proteins. We report here the creation of a set of transgenic fly lines that allow spatially and temporally regulated expression of Drosophila Rab proteins. We generated fluorescent protein-tagged wild-type, dominant-negative, and constitutively active forms of 31 Drosophila Rab proteins. We describe Drosophila Rab expression patterns during embryogenesis, the subcellular localization of some Rab proteins, and comparisons of the localization of wild-type, dominant-negative, and constitutively active forms of selected Rab proteins. The high evolutionary conservation and low redundancy of Drosophila Rab proteins make these transgenic lines a useful tool kit for investigating Rab functions in vivo.
0
Citation306
0
Save
47

Probabilistic axon targeting dynamics lead to individualized brain wiring

Mahéva Andriatsilavo et al.Aug 26, 2022
Summary Developmental variation in brain-wiring contributes to behavioural individuality 1,2 . However, how and when individualized wiring diagrams emerge and become stable during development remains largely unknown. Here, we explored axon targeting dynamics in individual brains using live-imaging of a developing Drosophila visual circuit and discovered that targeting choice is an algorithmic multi-step growth process with variable outcomes. Using optogenetics, we found that temporally restricted Notch lateral-inhibition defines a subset of neurons with a probabilistic potential to innervate distal targets. Next, axons from Notch OFF neurons amplify into long actin-rich multi-fibre structures necessary for distal growth. A subset of these Notch OFF neurons create distal targeting axons by stabilizing microtubule growth in one of their actin fibres. Amplified axons without tubulin-stabilized fibres retract, resulting in the stochastic selection of a different number of distal targeting axons in each brain. Pharmacological microtubule destabilization suffices to inhibit this targeting. We observed a similar axonal amplification-stabilization process in the developing chick spinal cord, suggesting a conserved mechanism. Finally, early microtubule patterns predict the adult brain-wiring of an individual in a target-independent manner prior to synapse formation 3,4 . Thus, we show that a temporal succession of genetically encoded stochastic processes explains the emergence of individual wiring variation. One-Sentence Summary The temporal succession of stochastic developmental processes explains the emergence of individual wiring variation.
35

Variable brain wiring through scalable and relative synapse formation inDrosophila

Ferdi Kiral et al.May 13, 2021
Abstract Variability of synapse numbers and partners despite identical genes reveals limits of genetic determinism. Non-genetic perturbation of brain wiring can therefore reveal to what extent synapse formation is precise and absolute, or promiscuous and relative. Here, we show the role of relative partner availability for synapse formation in the fly brain through perturbation of developmental temperature. Unexpectedly, slower development at lower temperatures substantially increases axo-dendritic branching, synapse numbers and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we further show that scalability of synapse numbers and ratios is preserved when relative availability of synaptic partners is changed in a DIPγ mutant that ablates R7’s preferred synaptic partner. Behaviorally, movement activity scales inversely with synapse numbers, while movement precision and relative connectivity are congruently robust. Hence, the fly genome encodes scalable relative connectivity to develop functional, but not identical, brains. One-Sentence Summary Non-identical connectivity and behavior result from temperature-dependent synaptic partner availability in Drosophila .
35
Citation3
0
Save
0

The Drosophila Amyloid Precursor Protein homologue mediates neuronal survival and neuro-glial interactions

Irini Kessissoglou et al.Mar 9, 2020
The amyloid precursor protein (APP) is a structurally and functionally conserved transmembrane protein whose physiological role in adult brain function and health is still unclear. Because mutations in APP cause familial Alzheimer’s disease, most research focuses on this aspect of APP biology. We investigated the physiological function of APP in the adult brain using the fruit fly Drosophila melanogaster , which harbors a single APP homologue called APP Like (APPL). Previous studies have provided evidence for the implication of APPL in neuronal wiring and axonal growth through the Wnt signaling pathway. However, like APP, APPL continues to be expressed in all neurons of the adult brain where its functions and their molecular and cellular underpinnings are unknown. We report that APPL loss of function results in the dysregulation of endolysosomal function, in both neurons and glia, with a notable enlargement of early endosomal compartment in neurons followed by neuronal cell death, the accumulation of dead neurons in the brain during a critical period at a young age and subsequent reduction in lifespan. These defects can be rescued by reduction in the levels of the early endosomal regulator Rab5, indicating a causal role of endosomal function for cell death. Finally, we show that the secreted extracellular domain of APPL is taken up by glia, regulates their endosomal morphology and this is necessary and sufficient for the clearance of neuronal debris in an axotomy model. We propose that the APP proteins represent a novel family of neuro-glial signaling proteins required for adult brain homeostasis.
1

A critical developmental interval of coupling axon branching to synaptic degradation during neural circuit formation

Suchetana Dutta et al.Apr 8, 2022
ABSTRACT The emergence of neuronal wiring specificity requires stabilization of dynamic axonal branches at sites of selective synapse formation. Models that explain how axonal branching is coupled to synaptogenesis postulate molecular regulators acting in a spatiotemporally restricted fashion. We report that Epidermal Growth Factor Receptor (EGFR) activity is required in presynaptic axonal branches during two distinct temporal intervals to regulate circuit wiring in the developing Drosophila visual system. EGFR is required early to regulate primary axonal branching and independently again later to prevent autophagic degradation of the synaptic active zone protein Bruchpilot (Brp). The protection of synaptic material during this later interval of wiring ensures the stabilization of terminal branches, circuit connectivity and appropriate visual behavior. Phenotypes of EGFR inactivation were rescued by increasing Brp levels or downregulating autophagic genes. We identify a temporally restricted molecular mechanism required for coupling axonal branching and synaptic stabilization that contributes to the emergence of neuronal wiring specificity.
0

Systematic functional analysis of Rab GTPases reveals limits of neuronal robustness in Drosophila

Friederike Kohrs et al.Feb 22, 2020
Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In addition, we created a transgenic fly collection for the acute, synchronous release system RUSH for all 26 Rabs. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous-system enriched Rabs yields viable and fertile flies without obvious morphological defects. However, 9 of these 13 affect either developmental timing when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. These defects are non-lethal under laboratory conditions, but represent sensitized genetic backgrounds that reveal limits of developmental and functional robustness to environmental challenges. Interestingly, the neuronal rab26 was previously proposed to function in synaptic maintenance by linking autophagy and synaptic vesicle recycling and we identified rab26 as one of six rab mutants with reduced synaptic function under continuous stimulation conditions. However, we found no changes to autophagy or synaptic vesicle markers in the rab26 mutant, but instead a cell-specific role in membrane receptor turnover associated with cholinergic synapses in the fly visual system. Our systematic functional analyses suggest that several Rabs ensure robust development and function under varying environmental conditions. The mutant and transgenic fly collections generated in this study provide a basis for further studies of Rabs during development and homeostasis in vivo.
Load More