DB
Doug Barker
Author with expertise in Molecular Mechanisms of Neurodegenerative Diseases
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
447
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Genetic Risk Underlying Psychiatric and Cognitive Symptoms in Huntington’s Disease

Natalie Ellis et al.May 1, 2020

Abstract

Background

 Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized examination of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown. 

Methods

 We tested the hypothesis that psychiatric and cognitive symptoms in HD are influenced by the same common genetic variation as in the general population by 1) constructing polygenic risk scores from large genome-wide association studies of psychiatric and neurodegenerative disorders and of intelligence and 2) testing for correlation with the presence of psychiatric and cognitive symptoms in a large sample (n = 5160) of patients with HD. 

Results

 Polygenic risk score for major depression was associated specifically with increased risk of depression in HD, as was schizophrenia risk score with psychosis and irritability. Cognitive impairment and apathy were associated with reduced polygenic risk score for intelligence. 

Conclusions

 Polygenic risk scores for psychiatric disorders, particularly depression and schizophrenia, are associated with increased risk of the corresponding psychiatric symptoms in HD, suggesting a common genetic liability. However, the genetic liability to cognitive impairment and apathy appears to be distinct from other psychiatric symptoms in HD. No associations were observed between HD symptoms and risk scores for other neurodegenerative disorders. These data provide a rationale for treatments effective in depression and schizophrenia to be used to treat depression and psychotic symptoms in HD.
2

Mutations causing Lopes-Maciel-Rodan syndrome are huntingtin hypomorphs

Roy Jung et al.Jan 11, 2021
Huntington's disease pathogenesis involves a genetic gain-of-function toxicity mechanism triggered by the expanded HTT CAG repeat. Current therapeutic efforts aim to suppress expression of total or mutant huntingtin, though the relationship of huntingtin's normal activities to the gain-of-function mechanism and what the effects of huntingtin-lowering might be are unclear. Here, we have re-investigated a rare family segregating two presumed HTT loss-of-function (LoF) variants associated with the developmental disorder, Lopes-Maciel-Rodan syndrome (LOMARS), using whole-genome sequencing of DNA from cell lines, in conjunction with analysis of mRNA and protein expression. Our findings correct the muddled annotation of these HTT variants, reaffirm they are the genetic cause of the LOMARS phenotype and demonstrate that each variant is a huntingtin hypomorphic mutation. The NM_002111.8: c.4469+1G>A splice donor variant results in aberrant (exon 34) splicing and severely reduced mRNA, whereas, surprisingly, the NM_002111.8: c.8157T>A NP_002102.4: Phe2719Leu missense variant results in abnormally rapid turnover of the Leu2719 huntingtin protein. Thus, although rare and subject to an as yet unknown LoF intolerance at the population level, bona fide HTT LoF variants can be transmitted by normal individuals leading to severe consequences in compound heterozygotes due to huntingtin deficiency.
2
Citation24
0
Save
0

Genetic risk underlying psychiatric and cognitive symptoms in Huntington’s Disease

Natalie Ellis et al.May 17, 2019
Abstract Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized exam of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown. We tested the hypothesis that psychiatric and cognitive symptoms in HD are influenced by the same common genetic variation as in the general population by constructing polygenic risk scores from large genome-wide association studies of psychiatric and neurodegenerative disorders, and of intelligence, and testing for correlation with the presence of psychiatric and cognitive symptoms in a large sample (n=5160) of HD patients. Polygenic risk score for major depression was associated specifically with increased risk of depression in HD, as was schizophrenia risk score with psychosis and irritability. Cognitive impairment and apathy were associated with reduced polygenic risk score for intelligence. In general, polygenic risk scores for psychiatric disorders, particularly depression and schizophrenia, are associated with increased risk of the corresponding psychiatric symptoms in HD, suggesting a common genetic liability. However, the genetic liability to cognitive impairment and apathy appears to be distinct from other psychiatric symptoms in HD. No associations were observed between HD symptoms and risk scores for other neurodegenerative disorders. These data provide a rationale for treatments effective in depression and schizophrenia to be used to treat depression and psychotic symptoms in HD.
0
Citation2
0
Save
1

B1 HTT CAG knock-in mice with pure and interrupted repeat tracts provide insight into the role of somatic expansion in HD pathogenesis

Vanessa Wheeler et al.Sep 1, 2016

Background

 The expanded CAG repeat in the Huntington’s disease (HD) gene HTT is the major contributor to disease onset. The repeat also expands progressively in somatic cells, particularly in medium-spiny striatal neurons. Human and mouse genetic studies strongly support somatic expansion as disease modifier, with important implications for developing novel disease-modifying therapies. 

Aim

 To develop HD knock-in mice to gain further insight into the role of somatic CAG expansion on phenotypic expression. 

Methods/techniques

 We have generated HD knock-in mice harbouring either pure CAG tracts (HttCAG45, HttCAG80, HttCAG105) or CAG tracts interrupted with CAA residues (Htt[CAGCAACAGCAACAA]9, Htt[CAGCAACAGCAACAA]16, Htt[CAGCAACAGCAACAA]21), with pairs of mice expressing huntingtin with matching glutamine tract lengths. We have analysed somatic expansion, huntingtin expression and performed phenotypic analyses. We examined the effect of repeat interruption on quantitative nuclear huntingtin immunstaining phenotypes in the striatum, and on behaviour using automated, high-throughput PhenoCube®, NeuroCube® and SmartCube® platforms. 

Results

 Pure repeat mice exhibit tissue-specific, age- and CAG length-dependent somatic expansion. In contrast, the [CAGCAACAGCAACAA] repeat configuration results in complete repeat stabilisation. Interestingly, repeat interruption also reduces huntingtin mRNA and soluble protein. The results of our phenotypic analyses provide evidence for slowed disease progression in the interrupted repeat mice relative to their pure repeat counterparts. 

Conclusions

 These results are consistent with the hypothesis that somatic expansion accelerates pathogenesis. However, additional molecular and phenotypic analyses are needed to tease out the relative contribution of somatic expansion to disease expression. Together, the results from these experiments will provide important insight into the role of somatic expansion in HD, as well as insight into other aspects of disease biology that are dependent upon HTT CAG repeat DNA and/or RNA structure. Importantly, these novel knock-in lines provide valuable tools to dissect mechanisms of HD modifier genes that might act in a manner that is either dependent on or independent of somatic CAG expansion.
2

Modulation of huntingtin degradation by cAMP-dependent protein kinase A (PKA) phosphorylation of C-HEAT domain Ser2550

Yejin Lee et al.May 4, 2022
ABSTRACT Huntington’s disease (HD) is a neurodegerative disorder caused by an inherited unstable HTT CAG repeat that expands further, thereby eliciting a disease process that may be initiated by polyglutamine-expanded huntingtin or a short polyglutamine-product. Phosphorylation of selected candidate residues is reported to mediate polyglutamine-fragment degradation and toxicity. Here to support the discovery of phospho-sites involved in the life-cycle of (full-length) huntingtin, we employed mass spectrometry-based phosphoproteomics to systematically identify sites in purified huntingtin and in the endogenous protein, by proteomic and phospho-proteomic analyses of members of an HD neuronal progenitor cell panel. Our results bring total huntingtin phospho-sites to 95, with more located in the N-HEAT domain relative to numbers in the Bridge and C-HEAT domains. Moreover, phosphorylation of C-HEAT Ser2550 by cAMP-dependent protein kinase (PKA), the top hit in kinase activity screens, was found to hasten huntingtin degradation, such that levels of the catalytic subunit (PRKACA) were inversely related to huntingtin levels. Taken together these findings highlight categories of phospho-sites that merit further study and provide a phospho-site kinase pair (pSer2550-PKA) with which to investigate the biological processes that regulate huntingtin degradation and thereby influence the steady state levels of huntingtin in HD cells.