KY
Kumiko Yoshioka-Kobayashi
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(0% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The methyl cycle is a conserved regulator of biological clocks.

Jean‐Michel Fustin et al.May 29, 2019
+16
C
S
J
The methyl cycle is a universally conserved metabolic pathway operating in prokaryotes and eukaryotes. In this pathway, the amino acid methionine is used to synthesize S-adenosylmethionine, the methyl donor co-substrate in the methylation of nucleic acids, histone and non-histone proteins and many other molecules within the cell. The methylation of nucleic acids and proteins is the foundation of epigenetic and epitranscriptomic regulations of gene expression, but whether the methyl cycle centrally regulates gene expression and function by controlling the availability of methyl moieties is poorly understood. From cyanobacteria to humans, a circadian clock that involves an exquisitely regulated transcription-translation-feedback loop driving oscillations in gene expression and orchestrating physiology and behavior has been described. We reported previously that inhibition of the methyl cycle in mammalian cells caused the lengthening of the period of these oscillations, suggesting the methyl cycle may indeed act as a central regulator of gene expression, at least in mammals. Here, we investigated whether the methyl cycle, given its universal presence among living beings, regulates the circadian clock in species across the phylogenetic tree of life. We reveal a remarkable evolutionary conservation of the link between the methyl cycle and the circadian clock. Moreover, we show that the methyl cycle also regulates the somite segmentation clock, another transcription-translation negative feedback loop-based timing mechanism that orchestrate embryonic development in vertebrates, highlighting the methyl cycle as a master regulator of biological clocks.
0

Species-specific oscillation periods of human and mouse segmentation clocks are due to cell autonomous differences in biochemical reaction parameters

Mitsuhiro Matsuda et al.May 26, 2019
+7
J
H
M
While the mechanisms of embryonic development are similar between mouse and human, the tempo is in general slower in human. The cause of interspecies differences in developmental time remains a mystery partly due to lack of an appropriate model system. Since murine and human embryos differ in their sizes, geometries, and nutrients, we use in vitro differentiation of pluripotent stem cells (PSCs) to compare the same type of cells between the species in similar culture conditions. As an example of well-defined developmental time, we focus on the segmentation clock, oscillatory gene expression that regulates the timing of sequential formation of body segments. In this way we recapitulate the murine and human segmentation clocks in vitro, showing that the species-specific oscillation periods are derived from cell autonomous differences in the speeds of biochemical reactions. Presomitic mesoderm (PSM)-like cells induced from murine and human PSCs displayed the oscillatory expression of HES7, the core gene of the segmentation clock, with oscillation periods of 2-3 hours (mouse PSM) and 5-6 hours (human PSM). Swapping HES7 loci between murine and human genomes did not change the oscillation periods dramatically, denying the possibility that interspecies differences in the sequences of HES7 loci might be the cause of the observed period difference. Instead, we found that the biochemical reactions that determine the oscillation period, such as the degradation of HES7 and delays in its expression, are slower in human PSM compared with those in mouse PSM. With the measured biochemical parameters, our mathematical model successfully accounted for the 2-3-fold period difference between mouse and human. We further demonstrate that the concept of slower biochemical reactions in human cells is generalizable to several other genes, as well as to another cell type. These results collectively indicate that differences in the speeds of biochemical reactions between murine and human cells give rise to the interspecies period difference of the segmentation clock and may contribute to other interspecies differences in developmental time.
0

In vitro characterization of the human segmentation clock

Margarete Diaz‐Cuadros et al.Nov 4, 2018
+9
C
D
M
The vertebral column is characterized by the periodic arrangement of vertebrae along the anterior-posterior (AP) axis. This segmental or metameric organization is established early in embryogenesis when pairs of embryonic segments called somites are rhythmically produced by the presomitic mesoderm (PSM). The tempo of somite formation is controlled by a molecular oscillator known as the segmentation clock. While this oscillator has been well characterized in model organisms whether a similar oscillator exists in humans remains unknown. We have previously shown that human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells can differentiate in vitro into PSM upon activation of the Wnt signaling pathway combined with BMP inhibition. Here, we show that these human PSM cells exhibit Notch and YAP-dependent oscillations of the cyclic gene HES7 with a 5-hour period. Single cell RNA-sequencing comparison of the differentiating iPS cells with mouse PSM reveals that human PSM cells follow a similar differentiation path and exhibit a remarkably coordinated differentiation sequence. We also demonstrate that FGF signaling controls the phase and period of the oscillator. This contrasts with classical segmentation models such as the Clock and Wavefront where FGF merely implements a signaling threshold specifying where oscillations stop. Overall, our work identifying the human segmentation clock represents an important breakthrough for human developmental biology.