DL
David Labbé
Author with expertise in Role of Long Noncoding RNAs in Cancer and Development
McGill University Health Centre, McGill University, Harvard University
+ 12 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
132
h-index:
25
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer

Katherine Morel et al.Sep 5, 2022
+34
D
A
K
Prostate cancers are considered to be immunologically 'cold' tumors given the very few patients who respond to checkpoint inhibitor (CPI) therapy. Recently, enrichment of interferon-stimulated genes (ISGs) predicted a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is overexpressed in prostate cancer and known to negatively regulate ISGs. In the present study, we demonstrate that EZH2 inhibition in prostate cancer models activates a double-stranded RNA-STING-ISG stress response upregulating genes involved in antigen presentation, Th1 chemokine signaling and interferon response, including programmed cell death protein 1 (PD-L1) that is dependent on STING activation. EZH2 inhibition substantially increased intratumoral trafficking of activated CD8+ T cells and increased M1 tumor-associated macrophages, overall reversing resistance to PD-1 CPI. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. These data suggest EZH2 inhibition as a therapeutic direction to enhance prostate cancer response to PD-1 CPI.
14

MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets

Xintao Qiu et al.Oct 24, 2023
+30
T
N
X
ABSTRACT c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Importantly, analyses of clinical specimens revealed that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq revealed an increased RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes. STATEMENT OF SIGNIFICANCE AR and MYC are key to prostate cancer etiology but our current understanding of their interplay is scarce. Here we show that the oncogenic transcription factor MYC can pause the transcriptional program of the master transcription factor in prostate cancer, AR, while turning on its own, even more lethal program.
0

Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer

Nadia Boufaied et al.Sep 6, 2024
+31
T
P
N
Abstract Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC–driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. Significance: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742
0

Targeting EZH2 Increases Therapeutic Efficacy of Check-Point Blockade in Models of Prostate Cancer

Anjali Sheahan et al.May 7, 2020
+20
D
K
A
Prostate cancers are considered immunologically cold tumors given the very few patients who respond to checkpoint inhibitor therapy (CPI). Recently, enrichment of interferon (IFN) response genes predicts a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is over-expressed in prostate cancer and is known to negatively regulate IFN response genes. Here, we demonstrate that inhibition of EZH2 catalytic activity in prostate cancer models derepresses expression of double-strand RNA (dsRNA), associated with upregulation of genes involved in antigen presentation, Th-1 chemokine signaling, and interferon (IFN) response, including PD-L1. Similarly, application of a novel EZH2 derived gene signature to human prostate sample analysis indicated an inverse correlation between tumor EZH2 activity/expression with T-cell inflamed and IFN gene signatures and PD-L1 expression. EZH2 inhibition combined with PD-1 CPI significantly enhances anti-tumor response that is dependent on up-regulation of tumor PD-L1 expression. Further, combination therapy significantly increases intratumoral trafficking of activated CD8+ T-cells and M1 tumor associated macrophages (TAMs) with concurrent loss of M2 TAMs. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. This data suggests EZH2 inhibition as a novel therapeutic direction to enhance prostate cancer response to PD-1 CPI.
0

Protein Tyrosine Phosphatase 1B Regulates MicroRNA-208b-Argonaute 2 Association and Thyroid Hormone Responsiveness in Cardiac Hypertrophy

Gérald Coulis et al.May 7, 2020
+8
D
Y
G
Elevated reactive oxygen species (ROS) production plays an important role in the pathogenesis of several diseases, including cardiac hypertrophy. While the regulation of diverse sources of ROS is well characterized in the heart, the redox-sensitive targets that contribute to redox signaling remain largely undefined. We now report that protein tyrosine phosphatase 1B (PTP1B) is reversibly oxidized and inactivated in hearts undergoing hypertrophy and that gene deletion of PTP1B in mouse hearts cause an hypertrophic phenotype that is critically exacerbated in mice subjected to pressure overload. Furthermore, we show that PTP1B dephosphorylates Tyr393 on argonaute 2, a key component of the RNA-induced silencing complex, and sustains gene silencing in the heart. Our results indicate that PTP1B inactivation and argonaute 2 Tyr393 phosphorylation specifically prevents argonaute 2 from interacting with miR-208b. Phosphorylation and inactivation of argonaute 2 in PTP1B cKO mice revealed a mechanism by which defective miR-208b-mediated repression of thyroid hormone receptor-associated protein 1 (THRAP1/MED13) contributes to thyroid hormone-mediated cardiac hypertrophy. In support of this conclusion, inhibiting the synthesis of triiodothyronine (T3), using propylthiouracil, rescued TAC-induced hypertrophy and improved myocardial contractility and systolic function in PTP1B cKO mice. Together, our data illustrate that PTP1B activity exerts a cardioprotective effect in the heart and that redox signaling is tightly linked to thyroid hormone responsiveness and to microRNA-mediated gene silencing in pathological hypertrophy.
1

SOCS3-mediated activation of p53-p21-NRF2 axis and cellular adaptation to oxidative stress in SOCS1-deficient hepatocellular carcinoma

Md Khan et al.Oct 24, 2023
+10
M
N
M
Abstract SOCS1 and SOCS3 genes, frequently repressed in hepatocellular carcinoma (HCC), function as tumor suppressors in hepatocytes. However, TCGA transcriptomic data revealed that SOCS1-low/SOCS3-high specimens displayed more aggressive HCC than SOCS1-low/SOCS3-low cases. We show that hepatocyte-specific Socs1- deficient livers upregulate Socs3 expression following genotoxic stress. Whereas deletion of Socs1 or Socs3 increased HCC susceptibility, ablation of both genes attenuated HCC growth. SOCS3 promotes p53 activation in SOCS1-deficient livers, leading to increased expression of CDKN1A (p21 WAF1/CIP1 ), which coincides with elevated expression and transcriptional activity of NRF2. Deleting Cdkn1a in SOCS1-deficient livers diminished NRF2 activation, oxidative stress and HCC progression. Elevated CDKN1A expression and enrichment of antioxidant response genes also characterized SOCS1-low/SOCS3-high HCC. SOCS1 expression in HCC cell lines reduced oxidative stress, p21 expression and NRF2 activation. Our findings demonstrate that SOCS1 controls the oncogenic potential of SOCS3-driven p53-p21-NRF2 axis and suggest that NRF2-mediated antioxidant response represents a drug target in SOCS1-deficient HCC.