PH
Peter Harley
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
4
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

Pathogenic TDP-43 Disrupts Axon Initial Segment Structure and Neuronal Excitability in a Human iPSC Model of ALS

Peter Harley et al.May 17, 2022
+5
F
G
P
Abstract Dysregulated neuronal excitability is a hallmark of amyotrophic lateral sclerosis (ALS). We sought to investigate how functional changes to the axon initial segment (AIS), the site of action potential generation, could impact neuronal excitability in a human iPSC model of ALS. We found that early (6-week) ALS-related TDP-43 G298S motor neurons showed an increase in the length of the AIS, relative to CRISPR-corrected controls. This was linked to neuronal hyperexcitability and increased spontaneous contractions of hiPSC-myofibers in compartmentalised neuromuscular co-cultures. In contrast late (10-week) TDP-43 G298S motor neurons showed reduced AIS length and hypoexcitability. At a molecular level aberrant expression of the AIS master scaffolding protein Ankyrin-G, and the AIS-specific voltage-gated ion channels SCN1A (Nav1.1) and SCN8A (Nav1.6) mirrored these dynamic changes in excitability. Finally, at all stages, TDP-43 G298S motor neurons showed compromised activity-dependent plasticity of the AIS, further contributing to abnormal excitability. Our results point toward the AIS as an important subcellular target driving changes to neuronal excitability in ALS.
25
Citation3
0
Save
0

Loss of TDP-43 induces synaptic dysfunction that is rescued by UNC13A splice-switching ASOs

Matthew Keuss et al.Jun 24, 2024
+15
E
P
M
TDP-43 loss of function induces multiple splicing changes, including a cryptic exon in the amyotrophic lateral sclerosis and fronto-temporal lobar degeneration risk gene UNC13A, leading to nonsense-mediated decay of UNC13A transcripts and loss of protein. UNC13A is an active zone protein with an integral role in coordinating pre-synaptic function. Here, we show TDP-43 depletion induces a severe reduction in synaptic transmission, leading to an asynchronous pattern of network activity. We demonstrate that these deficits are largely driven by a single cryptic exon in UNC13A. Antisense oligonucleotides targeting the UNC13A cryptic exon robustly rescue UNC13A protein levels and restore normal synaptic function, providing a potential new therapeutic approach for ALS and other TDP-43-related disorders.
0
Citation1
0
Save
0

A transcriptional toolbox for exploring peripheral neuro-immune interactions

Zhi Liang et al.Oct 22, 2019
+9
Z
S
Z
Correct communication between immune cells and peripheral neurons is crucial for the protection of our bodies. Its breakdown is observed in many common, often painful conditions, including arthritis, neuropathies and inflammatory bowel or bladder disease. Here, we have characterised the immune response in a mouse model of neuropathic pain using flow cytometry and cell-type specific RNA sequencing (RNA-seq). We found few striking sex differences, but a very persistent inflammatory response, with increased numbers of monocytes and macrophages up to 3½ months after the initial injury. This raises the question of whether the commonly used categorisation of pain into “inflammatory” and “neuropathic” is one that is mechanistically appropriate. Finally, we collated our data with other published RNA-seq datasets on neurons, macrophages and Schwann cells in naïve and nerve injury states. The result is a practical web-based tool for the transcriptional data-mining of peripheral neuroimmune interactions.
0

Creation of de novo cryptic splicing for ALS/FTD precision medicine

Oscar Wilkins et al.Jan 1, 2023
+17
C
D
O
A system enabling the expression of therapeutic proteins specifically in diseased cells would be transformative, providing greatly increased safety and the possibility of pre-emptive treatment. Here we describe 9TDP-REG9, a precision medicine approach primarily for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which exploits the cryptic splicing events that occur in cells with TDP-43 loss-of-function (TDP-LOF) in order to drive expression specifically in diseased cells. In addition to modifying existing cryptic exons for this purpose, we develop a deep-learning-powered algorithm for generating customisable cryptic splicing events, which can be embedded within virtually any coding sequence. By placing part of a coding sequence within a novel cryptic exon, we tightly couple protein expression to TDP-LOF. Protein expression is activated by TDP-LOF in vitro and in vivo, including TDP-LOF induced by cytoplasmic TDP-43 aggregation. In addition to generating a variety of fluorescent and luminescent reporters, we use this system to perform TDP-LOF-dependent genomic prime editing to ablate the UNC13A cryptic donor splice site. Furthermore, we design a panel of tightly gated, autoregulating vectors encoding a TDP-43/Raver1 fusion protein, which rescue key pathological cryptic splicing events. In summary, we combine deep-learning and rational design to create sophisticated splicing sensors, resulting in a platform that provides far safer therapeutics for neurodegeneration, potentially even enabling preemptive treatment of at-risk individuals.