LH
Liang‐Dar Hwang
Author with expertise in Developmental Origins of Adult Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
8
h-index:
6
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Estimating indirect parental genetic effects on offspring phenotypes using virtual parental genotypes derived from sibling and half sibling pairs

Liang‐Dar Hwang et al.Feb 25, 2020
Abstract Indirect parental genetic effects may be defined as the influence of parental genotypes on offspring phenotypes over and above that which results from the transmission of genes from parents to children. However, given the relative paucity of large-scale family-based cohorts around the world, it is difficult to demonstrate parental genetic effects on human traits, particularly at individual loci. In this manuscript, we illustrate how parental genetic effects on offspring phenotypes, including late onset diseases, can be estimated at individual loci in principle using large-scale genome-wide association study (GWAS) data, even in the absence of parental genotypes. Our strategy involves creating “virtual” mothers and fathers by estimating the genotypic dosages of parental genotypes using physically genotyped data from relative pairs. We then utilize the expected dosages of the parents, and the actual genotypes of the offspring relative pairs, to perform conditional genetic association analyses to obtain asymptotically unbiased estimates of maternal, paternal and offspring genetic effects. We develop a freely available web application that quantifies the power of our approach using closed form asymptotic solutions. We implement our methods in a user-friendly software package IMPISH ( IM puting P arental genotypes I n S iblings and H alf-Siblings) which allows users to quickly and efficiently impute parental genotypes across the genome in large genome-wide datasets, and then use these estimated dosages in downstream linear mixed model association analyses. We conclude that imputing parental genotypes from relative pairs may provide a useful adjunct to existing large-scale genetic studies of parents and their offspring.
0
Citation6
0
Save
18

Using adopted individuals to partition maternal genetic effects into prenatal and postnatal effects on offspring phenotypes

Liang-Dar Hwang et al.Aug 6, 2021
Abstract Maternal genetic effects can be defined as the effect of a mother’s genotype on the phenotype of her offspring, independent of the offspring’s genotype. Maternal genetic effects can act via the intrauterine environment during pregnancy and/or via the postnatal environment. In this manuscript, we present a simple extension to the basic adoption design that uses structural equation modelling (SEM) to partition maternal genetic effects into prenatal and postnatal effects. We assume that in biological families, offspring phenotypes are influenced prenatally by their mother’s genotype and postnatally by both parents’ genotypes, whereas adopted individuals’ phenotypes are influenced prenatally by their biological mother’s genotype and postnatally by their adoptive parents’ genotypes. Our SEM framework allows us to model the (potentially) unobserved genotypes of biological and adoptive parents as latent variables, permitting us in principle to leverage the thousands of adopted singleton individuals in the UK Biobank. We examine the power, utility and type I error rate of our model using simulations and asymptotic power calculations. We apply our model to polygenic scores of educational attainment and birth weight associated variants, in up to 5178 adopted singletons, 983 trios, 3650 mother-offspring pairs, 1665 father-offspring pairs and 350330 singletons from the UK Biobank. Our results show the expected pattern of maternal genetic effects on offspring birth weight, but unexpectedly large prenatal maternal genetic effects on offspring educational attainment. Sensitivity and simulation analyses suggest this result may be at least partially due to adopted individuals in the UK Biobank being raised by their biological relatives. We show that accurate modelling of these sorts of cryptic relationships is sufficient to bring type I error rate under control and produce unbiased estimates of prenatal and postnatal maternal genetic effects. We conclude that there would be considerable value in following up adopted individuals in the UK Biobank to determine whether they were raised by their biological relatives, and if so, to precisely ascertain the nature of these relationships. These adopted individuals could then be incorporated into informative statistical genetics models like the one described in our manuscript to further elucidate the genetic architecture of complex traits and diseases.
18
Citation1
0
Save
13

Genome-wide association study identifies 48 common genetic variants associated with handedness

Gabriel Cuéllar-Partida et al.Nov 7, 2019
Abstract Handedness, a consistent asymmetry in skill or use of the hands, has been studied extensively because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and 32 studies from the International Handedness Consortium, we conducted the world’s largest genome-wide association study of handedness (1,534,836 right-handed, 194,198 (11.0%) left-handed and 37,637 (2.1%) ambidextrous individuals). We found 41 genetic loci associated with left-handedness and seven associated with ambidexterity at genome-wide levels of significance (P < 5×10 −8 ). Tissue enrichment analysis implicated the central nervous system and brain tissues including the hippocampus and cerebrum in the etiology of left-handedness. Pathways including regulation of microtubules, neurogenesis, axonogenesis and hippocampus morphology were also highlighted. We found suggestive positive genetic correlations between being left-handed and some neuropsychiatric traits including schizophrenia and bipolar disorder. SNP heritability analyses indicated that additive genetic effects of genotyped variants explained 5.9% (95% CI = 5.8% – 6.0%) of the underlying liability of being left-handed, while the narrow sense heritability was estimated at 12% (95% CI = 7.2% – 17.7%). Further, we show that genetic correlation between left-handedness and ambidexterity is low (r g = 0.26; 95% CI = 0.08 – 0.43) implying that these traits are largely influenced by different genetic mechanisms. In conclusion, our findings suggest that handedness, like many other complex traits is highly polygenic, and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders that has been observed in multiple observational studies.
13
Citation1
0
Save
0

Inference and visualization of phenome-wide causal relationships using genetic data: an application to dental caries and periodontitis

Simon Haworth et al.Dec 6, 2019
Background Hypothesis-free Mendelian randomization studies provide a way to assess the causal relevance of a trait across the human phenome but can be limited by statistical power or complicated by horizontal pleiotropy. The recently described latent causal variable (LCV) approach provides an alternative method for causal inference which might be useful in hypothesis-free experiments.Methods We developed an automated pipeline for phenome-wide tests using the LCV approach including steps to estimate partial genetic causality, filter to a meaningful set of estimates, apply correction for multiple testing and then present the findings in a graphical summary termed a causal architecture plot. We apply this process to body mass index and lipid traits as exemplars of traits where there is strong prior expectation for causal effects and dental caries and periodontitis as exemplars of traits where there is a need for causal inference.Results The results for lipids and BMI suggest that these traits are best viewed as creating consequences on a multitude of traits and conditions, thus providing additional evidence that supports viewing these traits as targets for interventions to improve health. On the other hand, caries and periodontitis are best viewed as a downstream consequence of other traits and diseases rather than a cause of ill health.Conclusions The automated process is available as part of the MASSIVE pipeline from the Complex-Traits Genetics Virtual Lab ( ) and results are available in ( ). We propose causal architecture plots based on phenome-wide partial genetic causality estimates as a way visualizing the overall causal map of the human phenome.Key messages 1. The latent causal variable approach uses summary statistics from genome-wide association studies to estimate a parameter termed genetic causality proportion .2. Systematic estimation of genetic causality proportion for many pairs of traits provides an alternative method for phenome-wide causal inference with some theoretical and practical advantages compared to phenome-wide Mendelian randomization.3. Using this approach, we confirm that lipid traits are an upstream risk factor for other traits and diseases, and we identify that dental diseases are predominantly a downstream consequence of other traits rather than a cause of poor systemic health.4. The method assumes no bidirectional causality and no confounding by environmental correlates of genotypes, so care is needed when these assumptions are not met.5. We developed an automated and accessible pipeline for estimating phenome-wide causal relationships and generating interactive visual summaries.
0

Bivariate genome-wide association analysis strengthens the role of bitter receptor clusters on chromosomes 7 and 12 in human bitter taste

Liang‐Dar Hwang et al.Apr 6, 2018
Human perception of bitter substances is partially genetically determined. Previously we discovered a single nucleotide polymorphism (SNP) within the bitter taste receptor gene TAS2R19 on chromosome 12 that accounts for 5.8% of the variance in the perceived intensity rating of quinine, and we strengthened the classic association between TAS2R38 genotype and the bitterness of propylthiouracil (PROP). Here we performed a genome-wide association study (GWAS) using a 40% larger sample (n = 1999) together with a bivariate approach to detect previously unidentified common variants with small effects on bitter perception. We identified two signals, both with small effects (< 2%), within the bitter taste receptor clusters on chromosomes 7 and 12, which influence the perceived bitterness of denatonium benzoate and sucrose octaacetate respectively. We also provided the first independent replication for an association of caffeine bitterness on chromosome 12. Furthermore, we provided evidence for pleiotropic effects on quinine, caffeine, sucrose octaacetate and denatonium benzoate for the three SNPs on chromosome 12 and the functional importance of the SNPs for denatonium benzoate bitterness. These findings provide new insights into the genetic architecture of bitter taste and offer a useful starting point for determining the biological pathways linking perception of bitter substances.
1

Modeling Parent-Specific Genetic Nurture in Families with Missing Parental Genotypes: Application to Birthweight and BMI

Justin Tubbs et al.Aug 7, 2020
Disaggregation and estimation of genetic effects from offspring and parents has long been of interest to statistical geneticists. Recently, technical and methodological advances have made the genome-wide and loci-specific estimation of direct offspring and parental genetic nurture effects more possible. However, unbiased estimation using these methods requires datasets where both parents and at least one child have been genotyped, which are relatively scarce. Our group has recently developed a method and accompanying software (IMPISH; Hwang et al., 2020) which is able to impute missing parental genotypes from observed data on sibships and estimate their effects on an offspring phenotype conditional on the effects of genetic transmission. However, this method is unable to disentangle maternal and paternal effects, which may differ in magnitude and direction. Here, we introduce an extension to the original IMPISH routine which takes advantage of all available nuclear families to impute parent-specific missing genotypes and obtain asymptotically unbiased estimates of genetic effects on offspring phenotypes. We apply this this method to data from related individuals in the UK Biobank, showing concordance with previous estimates of maternal genetic effects on offspring birthweight. We also conduct the first GWAS jointly estimating offspring-, maternal-, and paternal-specific genetic effects on body mass index.