MS
Matthew Simpson
Author with expertise in Mathematical Modeling of Cancer Growth and Treatment
Queensland University of Technology, Queens University, Rush University Medical Center
+ 9 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
71
(37% Open Access)
Cited by:
26
h-index:
48
/
i10-index:
169
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Quantitative analysis of tumour spheroid structure

Alexander Browning et al.Oct 24, 2023
+5
R
J
A
Abstract Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.
1
Citation4
0
Save
19

Designing and interpreting 4D tumour spheroid experiments

Ryan Murphy et al.Oct 24, 2023
+2
G
A
R
Abstract Tumour spheroid experiments are routinely used to study cancer progression and treatment. Various and inconsistent experimental designs are used, leading to challenges in interpretation and reproducibility. Using multiple experimental designs, live-dead cell staining, and real-time cell cycle imaging, we measure necrotic and proliferation-inhibited regions in over 1000 4D tumour spheroids (3D space plus cell cycle status). By intentionally varying the initial spheroid size and temporal sampling frequencies across multiple cell lines, we collect an abundance of measurements of internal spheroid structure. These data are difficult to compare and interpret. However, using an objective mathematical modelling framework and statistical identifiability analysis we quantitatively compare experimental designs and identify design choices that produce reliable biological insight. Measurements of internal spheroid structure provide the most insight, whereas varying initial spheroid size and temporal measurement frequency is less important. Our general framework applies to spheroids grown in different conditions and with different cell types.
19
Citation4
0
Save
6

Computationally efficient mechanism discovery for cell invasion with uncertainty quantification

Daniel VandenHeuvel et al.Oct 24, 2023
M
C
D
Abstract Parameter estimation for mathematical models of biological processes is often difficult and depends significantly on the quality and quantity of available data. We introduce an efficient frame-work using Gaussian processes to discover mechanisms underlying delay, migration, and proliferation in a cell invasion experiment. Gaussian processes are leveraged with bootstrapping to provide uncertainty quantification for the mechanisms that drive the invasion process. Our frame-work is efficient, parallelisable, and can be applied to other biological problems. We illustrate our methods using a canonical scratch assay experiment, demonstrating how simply we can explore different functional forms and develop and test hypotheses about underlying mechanisms, such as whether delay is present. All code and data to reproduce this work are available at https://github.com/DanielVandH/EquationLearning.jl . 1 Author summary In this work we introduce uncertainty quantification into equation learning methods, such as physics-informed and biologically-informed neural networks. Our framework is computationally efficient and applicable to problems with unknown nonlinear mechanisms that we wish to learn from experiments where only sparse noisy data are available. We demonstrate our methods on a canonical scratch assay experiment from cell biology and show the underlying mechanisms can be learned, providing confidence intervals for functional forms and for solutions to partial differential equation models believed to describe the experiment.
17

Computationally efficient framework for diagnosing, understanding, and predicting biphasic population growth

Ryan Murphy et al.Oct 24, 2023
+4
A
O
R
Abstract Throughout the life sciences, biological populations undergo multiple phases of growth, often referred to as biphasic growth for the commonly-encountered situation involving two phases. Biphasic population growth occurs over a massive range of spatial and temporal scales, ranging from microscopic growth of tumours over several days, to decades-long re-growth of corals in coral reefs that can extend for hundreds of kilometres. Different mathematical models and statistical methods are used to diagnose, understand, and predict biphasic growth. Common approaches can lead to inaccurate predictions of future growth that may result in inappropriate management and intervention strategies being implemented. Here we develop a very general computationally efficient framework, based on profile likelihood analysis, for diagnosing, understanding, and predicting biphasic population growth. The two key components of the framework are: (i) an efficient method to form approximate confidence intervals for the change point of the growth dynamics and model parameters; and, (ii) parameter-wise profile predictions that systematically reveal the influence of individual model parameters on predictions. To illustrate our framework we explore real-world case studies across the life sciences.
7

A free boundary mechanobiological model of epithelial tissues

Tamara Tambyah et al.Oct 24, 2023
M
P
R
T
Abstract In this study, we couple intracellular signalling and cell–based mechanical properties to develop a novel free boundary mechanobiological model of epithelial tissue dynamics. Mechanobiological coupling is introduced at the cell level in a discrete modelling framework, and new reaction–diffusion equations are derived to describe tissue–level outcomes. The free boundary evolves as a result of the underlying biological mechanisms included in the discrete model. To demonstrate the accuracy of the continuum model, we compare numerical solutions of the discrete and continuum models for two different signalling pathways. First, we study the Rac–Rho pathway where cell– and tissue–level mechanics are directly related to intracellular signalling. Second, we study an activator–inhibitor system which gives rise to spatial and temporal patterning related to Turing patterns. In all cases, the continuum model and free boundary condition accurately reflect the cell–level processes included in the discrete model.
15

Identifying cell-to-cell variability in internalisation using flow cytometry

Alexander Browning et al.Oct 24, 2023
+3
C
N
A
Summary Biological heterogeneity is a primary contributor to the variation observed in experiments that probe dynamical processes, such as internalisation. Given that internalisation is a critical process by which many therapeutics and viruses reach their intracellular site of action, quantifying cell-to-cell variability in internalisation is of high biological interest. Yet, it is common for studies of internalisation to neglect cell-to-cell variability. We develop a simple mathematical model of internalisation that captures the dynamical behaviour, cell-to-cell variation, and extrinsic noise introduced by flow cytometry. We calibrate our model through a novel distribution-matching approximate Bayesian computation algorithm to flow cytometry data of internalisation of anti-transferrin receptor antibody in a human B-cell lymphoblastoid cell line. Our model reproduces experimental observations, identifies cell-to-cell variability in the internalisation and recycling rates, and, importantly, provides information relating to inferential uncertainty. Given that our approach is agnostic to sample size and signal-to-noise ratio, our modelling framework is broadly applicable to identify biological variability in single-cell data from internalisation assays and similar experiments that probe cellular dynamical processes.
15
Citation2
0
Save
0

Making Predictions Using Poorly Identified Mathematical Models

Matthew Simpson et al.Sep 11, 2024
O
M
Abstract Many commonly used mathematical models in the field of mathematical biology involve challenges of parameter non-identifiability. Practical non-identifiability, where the quality and quantity of data does not provide sufficiently precise parameter estimates is often encountered, even with relatively simple models. In particular, the situation where some parameters are identifiable and others are not is often encountered. In this work we apply a recent likelihood-based workflow, called Profile-Wise Analysis (PWA), to non-identifiable models for the first time. The PWA workflow addresses identifiability, parameter estimation, and prediction in a unified framework that is simple to implement and interpret. Previous implementations of the workflow have dealt with idealised identifiable problems only. In this study we illustrate how the PWA workflow can be applied to both structurally non-identifiable and practically non-identifiable models in the context of simple population growth models. Dealing with simple mathematical models allows us to present the PWA workflow in a didactic, self-contained document that can be studied together with relatively straightforward Julia code provided on GitHub . Working with simple mathematical models allows the PWA workflow prediction intervals to be compared with gold standard full likelihood prediction intervals. Together, our examples illustrate how the PWA workflow provides us with a systematic way of dealing with non-identifiability, especially compared to other approaches, such as seeking ad hoc parameter combinations, or simply setting parameter values to some arbitrary default value. Importantly, we show that the PWA workflow provides insight into the commonly-encountered situation where some parameters are identifiable and others are not, allowing us to explore how uncertainty in some parameters, and combinations of parameters, regardless of their identifiability status, influences model predictions in a way that is insightful and interpretable.
20

Model-based data analysis of tissue growth in thin 3D printed scaffolds

Alexander Browning et al.Oct 24, 2023
+4
P
O
A
Abstract Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of cell behaviour in biologically realistic geometries. Cell proliferation and migration in these experiments have yet to be explicitly characterised, limiting the ability of experimentalists to determine the effects of various experimental conditions, such as scaffold geometry, on cell behaviour. We consider tissue growth by osteoblastic cells in melt electro-written scaffolds that comprise thin square pores with sizes that we deliberately vary. We collect highly detailed temporal measurements of the average cell density, tissue coverage, and tissue geometry. To quantify tissue growth in terms of the underlying cell proliferation and migration processes, we introduce and calibrate a mechanistic mathematical model based on the Porous-Fisher reaction-diffusion equation. Parameter estimates and uncertainty quantification through profile likelihood analysis reveal consistency in the rate of cell proliferation and steady-state cell density between pore sizes. This analysis also serves as an important model verification tool: while the use of reaction-diffusion models in biology is widespread, the appropriateness of these models to describe tissue growth in 3D scaffolds has yet to be explored. We find that the Porous-Fisher model is able to capture features relating to the cell density and tissue coverage, but is not able to capture geometric features relating to the circularity of the tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests several areas for model refinement, and provides guidance for future experimental work that explores tissue growth in 3D printed scaffolds. Author Summary Advances in 3D printing technology have led to cell culture experiments that realistically capture natural biological environments. Despite the necessity of quantifying cell behaviour with parameters that can be compared between experiments, many existing mathematical models of tissue growth in these experiments neglect information relating to population size. We consider tissue growth by cells on 3D printed scaffolds that comprise square pores of various sizes in this work. We apply a relatively simple mathematical model based on the Porous-Fisher reaction-diffusion equation to interpret highly detailed measurements relating to both the cell density and the quantity of tissue deposited. We analyse the efficacy of such a model in capturing cell behaviour seen in the experiments and quantify cell behaviour in terms of parameters that carry a biologically meaningful interpretation. Our analysis identifies important areas for model refinement and provides guidance for future data-collection and experimentation that explores tissue growth in 3D printed scaffolds.
8

Mathematical model of tumour spheroid experiments with real-time cell cycle imaging

Jin Wang et al.Oct 24, 2023
M
N
L
J
Abstract Three-dimensional (3D) in vitro tumour spheroid experiments are an important tool for studying cancer progression and potential drug therapies. Standard experiments involve growing and imaging spheroids to explore how different experimental conditions lead to different rates of spheroid growth. These kinds of experiments, however, do not reveal any information about the spatial distribution of the cell cycle within the expanding spheroid. Since 2008, a new experimental technology called fluorescent ubiquitination-based cell cycle indicator (FUCCI), has enabled real time in situ visualisation of the cell cycle progression. FUCCI labelling involves cells in G1 phase of the cell cycle fluorescing red, and cells in the S/G2/M phase of the cell cycle fluorescing green. Experimental observations of 3D tumour spheroids with FUCCI labelling reveal significant intratumoural structure, as the cell cycle status can vary with location. Although many mathematical models of tumour spheroid growth have been developed, none of the existing mathematical models are designed to interpret experimental observations with FUCCI labelling. In this work we extend the mathematical framework originally proposed by Ward and King (1997) to develop a new mathematical model of FUCCI-labelled tumour spheroid growth. The mathematical model treats the spheroid as being composed of three subpopulations: (i) living cells in G1 phase that fluoresce red; (ii) living cells in S/G2/M phase that fluoresce green; and, (iii) dead cells that do not fluoresce. We assume that the rates at which cells pass through different phases of the cell cycle, and the rate of cell death, depend upon the local oxygen concentration in the spheroid. Parameterising the new mathematical model using experimental measurements of cell cycle transition times, we show that the model can capture important experimental observations that cannot be addressed using previous mathematical models. Further, we show that the mathematical model can be used to quantitatively mimic the action of anti-mitotic drugs applied to the spheroid. All software required to solve the nonlinear moving boundary problem associated with the new mathematical model are available on GitHub .
8
Citation1
0
Save
18

The role of mechanical interactions in EMT

Ryan Murphy et al.Oct 24, 2023
+4
T
P
R
Abstract The detachment of cells from the boundary of an epithelial tissue and the subsequent invasion of these cells into surrounding tissues is important for cancer development and wound healing, and is strongly associated with the epithelial-mesenchymal transition (EMT). Chemical signals, such as TGF- β , produced by surrounding tissue can be up-taken by cells and induce EMT. In this work, we present a novel cell-based discrete mathematical model of mechanical cellular relaxation, cell proliferation, and cell detachment driven by chemically-dependent EMT in an epithelial tissue. A continuum description of the model is then derived in the form of a novel nonlinear free boundary problem. Using the discrete and continuum models we explore how the coupling of chemical transport and mechanical interactions influences EMT, and postulate how this could be used to help control EMT in pathological situations.
Load More