PC
Patrick Chinnery
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
40
(83% Open Access)
Cited by:
10,749
h-index:
120
/
i10-index:
517
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease

Gráinne Gorman et al.Feb 5, 2015
+10
Y
A
G
The prevalence of mitochondrial disease has proven difficult to establish, predominantly as a result of clinical and genetic heterogeneity. The phenotypic spectrum of mitochondrial disease has expanded significantly since the original reports that associated classic clinical syndromes with mitochondrial DNA (mtDNA) rearrangements and point mutations. The revolution in genetic technologies has allowed interrogation of the nuclear genome in a manner that has dramatically improved the diagnosis of mitochondrial disorders. We comprehensively assessed the prevalence of all forms of adult mitochondrial disease to include pathogenic mutations in both nuclear and mtDNA.Adults with suspected mitochondrial disease in the North East of England were referred to a single neurology center from 1990 to 2014. For the midyear period of 2011, we evaluated the minimum prevalence of symptomatic nuclear DNA mutations and symptomatic and asymptomatic mtDNA mutations causing mitochondrial diseases.The minimum prevalence rate for mtDNA mutations was 1 in 5,000 (20 per 100,000), comparable with our previously published prevalence rates. In this population, nuclear mutations were responsible for clinically overt adult mitochondrial disease in 2.9 per 100,000 adults.Combined, our data confirm that the total prevalence of adult mitochondrial disease, including pathogenic mutations of both the mitochondrial and nuclear genomes (≈1 in 4,300), is among the commonest adult forms of inherited neurological disorders. These figures hold important implications for the evaluation of interventions, provision of evidence-based health policies, and planning of future services.
0
Citation736
0
Save
0

A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development

Walfred Tang et al.Jun 1, 2015
+6
N
S
W
Resetting of the epigenome in human primordial germ cells (hPGCs) is critical for development. We show that the transcriptional program of hPGCs is distinct from that in mice, with co-expression of somatic specifiers and naive pluripotency genes TFCP2L1 and KLF4. This unique gene regulatory network, established by SOX17 and BLIMP1, drives comprehensive germline DNA demethylation by repressing DNA methylation pathways and activating TET-mediated hydroxymethylation. Base-resolution methylome analysis reveals progressive DNA demethylation to basal levels in week 5-7 in vivo hPGCs. Concurrently, hPGCs undergo chromatin reorganization, X reactivation, and imprint erasure. Despite global hypomethylation, evolutionarily young and potentially hazardous retroelements, like SVA, remain methylated. Remarkably, some loci associated with metabolic and neurological disorders are also resistant to DNA demethylation, revealing potential for transgenerational epigenetic inheritance that may have phenotypic consequences. We provide comprehensive insight on early human germline transcriptional network and epigenetic reprogramming that subsequently impacts human development and disease.
0
Citation582
0
Save
0

Prevalence of mitochondrial DNA disease in adults

Andrew Schaefer et al.Sep 20, 2007
+5
E
R
A
Abstract Objective Diverse and variable clinical features, a loose genotype–phenotype relationship, and presentation to different medical specialties have all hindered attempts to gauge the epidemiological impact of mitochondrial DNA (mtDNA) disease. Nevertheless, a clear understanding of its prevalence remains an important goal, particularly about planning appropriate clinical services. Consequently, the aim of this study was to accurately define the prevalence of mtDNA disease (primary mutation occurs in mtDNA) in the working‐age population of the North East of England. Methods Adults with suspected mitochondrial disease in the North East of England were referred to a single neurology center for investigation from 1990 to 2004. Those with pathogenic mtDNA mutations were identified and pedigree analysis performed. For the midyear period of 2001, we calculated the minimum point prevalence of mtDNA disease for adults of working age (>16 and <60/65 years for female/male patients, respectively). Results In this population, we found that 9.2 in 100,000 people have clinically manifest mtDNA disease, making this one of the commonest inherited neuromuscular disorders. In addition, a further 16.5 in 100,000 children and adults younger than retirement age are at risk for development of mtDNA disease. Interpretation Through detailed pedigree analysis and active family tracing, we have been able to provide revised minimum prevalence figures for mtDNA disease. These estimates confirm that mtDNA disease is a common cause of chronic morbidity and is more prevalent than has been previously appreciated. Ann Neurol 2007
0
Citation573
0
Save
0

Pathogenic Mitochondrial DNA Mutations Are Common in the General Population

Hannah Elliott et al.Aug 1, 2008
+2
J
D
H
Mitochondrial DNA (mtDNA) mutations are a major cause of genetic disease, but their prevalence in the general population is not known. We determined the frequency of ten mitochondrial point mutations in 3168 neonatal-cord-blood samples from sequential live births, analyzing matched maternal-blood samples to estimate the de novo mutation rate. mtDNA mutations were detected in 15 offspring (0.54%, 95% CI = 0.30–0.89%). Of these live births, 0.00107% (95% CI = 0.00087–0.0127) harbored a mutation not detected in the mother's blood, providing an estimate of the de novo mutation rate. The most common mutation was m.3243A→G. m.14484T→C was only found on sub-branches of mtDNA haplogroup J. In conclusion, at least one in 200 healthy humans harbors a pathogenic mtDNA mutation that potentially causes disease in the offspring of female carriers. The exclusive detection of m.14484T→C on haplogroup J implicates the background mtDNA haplotype in mutagenesis. These findings emphasize the importance of developing new approaches to prevent transmission. Mitochondrial DNA (mtDNA) mutations are a major cause of genetic disease, but their prevalence in the general population is not known. We determined the frequency of ten mitochondrial point mutations in 3168 neonatal-cord-blood samples from sequential live births, analyzing matched maternal-blood samples to estimate the de novo mutation rate. mtDNA mutations were detected in 15 offspring (0.54%, 95% CI = 0.30–0.89%). Of these live births, 0.00107% (95% CI = 0.00087–0.0127) harbored a mutation not detected in the mother's blood, providing an estimate of the de novo mutation rate. The most common mutation was m.3243A→G. m.14484T→C was only found on sub-branches of mtDNA haplogroup J. In conclusion, at least one in 200 healthy humans harbors a pathogenic mtDNA mutation that potentially causes disease in the offspring of female carriers. The exclusive detection of m.14484T→C on haplogroup J implicates the background mtDNA haplotype in mutagenesis. These findings emphasize the importance of developing new approaches to prevent transmission.
0
Citation570
0
Save
0

Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease

A Curtis et al.Jul 2, 2001
+13
C
C
A
0
Citation530
0
Save
0

Mitochondrial DNA mutations in human colonic crypt stem cells

Robert Taylor et al.Nov 1, 2003
+9
G
M
R
The mitochondrial genome encodes 13 essential subunits of the respiratory chain and has remarkable genetics based on uniparental inheritance. Within human populations, the mitochondrial genome has a high rate of sequence divergence with multiple polymorphic variants and thus has played a major role in examining the evolutionary history of our species. In recent years it has also become apparent that pathogenic mitochondrial DNA (mtDNA) mutations play an important role in neurological and other diseases. Patients harbor many different mtDNA mutations, some of which are mtDNA mutations, some of which are inherited, but others that seem to be sporadic. It has also been suggested that mtDNA mutations play a role in aging and cancer, but the evidence for a causative role in these conditions is less clear. The accumulated data would suggest, however, that mtDNA mutations occur on a frequent basis. In this article we describe a new phenomenon: the accumulation of mtDNA mutations in human colonic crypt stem cells that result in a significant biochemical defect in their progeny. These studies have important consequences not only for understanding of the finding of mtDNA mutations in aging tissues and tumors, but also for determining the frequency of mtDNA mutations within a cell.
0
Citation516
0
Save
0

A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes

Lynsey Cree et al.Jan 27, 2008
+5
D
H
L
0
Citation475
0
Save
0

A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy

Thomas Klopstock et al.Jul 23, 2011
+15
K
P
T
Major advances in understanding the pathogenesis of inherited metabolic disease caused by mitochondrial DNA mutations have yet to translate into treatments of proven efficacy. Leber’s hereditary optic neuropathy is the most common mitochondrial DNA disorder causing irreversible blindness in young adult life. Anecdotal reports support the use of idebenone in Leber’s hereditary optic neuropathy, but this has not been evaluated in a randomized controlled trial. We conducted a 24-week multi-centre double-blind, randomized, placebo-controlled trial in 85 patients with Leber’s hereditary optic neuropathy due to m.3460G>A, m.11778G>A, and m.14484T>C or mitochondrial DNA mutations. The active drug was idebenone 900 mg/day. The primary end-point was the best recovery in visual acuity. The main secondary end-point was the change in best visual acuity. Other secondary end-points were changes in visual acuity of the best eye at baseline and changes in visual acuity for both eyes in each patient. Colour-contrast sensitivity and retinal nerve fibre layer thickness were measured in subgroups. Idebenone was safe and well tolerated. The primary end-point did not reach statistical significance in the intention to treat population. However, post hoc interaction analysis showed a different response to idebenone in patients with discordant visual acuities at baseline; in these patients, all secondary end-points were significantly different between the idebenone and placebo groups. This first randomized controlled trial in the mitochondrial disorder, Leber’s hereditary optic neuropathy, provides evidence that patients with discordant visual acuities are the most likely to benefit from idebenone treatment, which is safe and well tolerated.
0
Citation475
0
Save
0

Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population

Fiona Norwood et al.Sep 18, 2009
+3
C
K
F
We have performed a detailed population study of patients with genetic muscle disease in the northern region of England. Our current clinic population comprises over 1100 patients in whom we have molecularly characterized 31 separate muscle disease entities. Diagnostic clarity achieved through careful delineation of clinical features supported by histological, immunological and genetic analysis has allowed us to reach a definitive diagnosis in 75.7% of our patients. We have compared our case profile with that from Walton and Nattrass’ seminal study from 1954, also of the northern region, together with data from other more recent studies from around the world. Point prevalence figures for each of the five major disease categories are comparable with those from other recent studies. Myotonic dystrophies are the most common, comprising 28.6% of our clinic population with a point prevalence of 10.6/100 000. Next most frequent are the dystrophinopathies and facioscapulohumeral muscular dystrophy making up 22.9% (8.46/100 000) and 10.7% (3.95/100 000) of the clinic population, respectively. Spinal muscular atrophy patients account for 5.1% or 1.87/100 000 patients. Limb girdle muscular dystrophy, which was described for the first time in the paper by Walton and Nattrass (1954) and comprised 17% of their clinic population, comprises 6.2% of our clinic population at a combined prevalence of 2.27/100 000. The clinic population included patients with 12 other muscle disorders. These disorders ranged from a point prevalence of 0.89/100 000 for the group of congenital muscular dystrophies to conditions with only two affected individuals in a population of three million. For the first time our study provides epidemiological information for X-linked Emery–Dreifuss muscular dystrophy and the collagen VI disorders. Each of the X-linked form of Emery–Dreifuss muscular dystrophy and Ullrich muscular dystrophy has a prevalence of 0.13/100 000, making both very rare. Bethlem myopathy was relatively more common with a prevalence of 0.77/100 000. Overall our study provides comprehensive epidemiological information on individually rare inherited neuromuscular conditions in Northern England. Despite the deliberate exclusion of relatively common groups such as hereditary motor and sensory neuropathy (40/100 000) and mitochondrial disorders (9.2/100 000), the combined prevalence is 37.0/100 000, demonstrating that these disorders, taken as a group, encompass a significant proportion of patients with chronic disease. The study also illustrates the immense diagnostic progress since the first regional survey over 50 years ago by Walton and Nattrass.
0
Citation465
0
Save
0

Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease

Lyndsey Craven et al.Apr 13, 2010
+9
G
H
L
Mitochondrial DNA (mtDNA) mutations passed down from a mother to offspring are a common cause of genetic disease, including neurological, muscle and heart problems, deafness and type 2 diabetes. It was shown recently in non-human primates that nuclear transfer techniques can prevent their transmission. Now, that proof-of-principle work has been extended to human embryos (see News, http://go.nature.com/xqgWXf ). A multi-department team based at Newcastle University transferred pronuclei between human zygotes, and obtained onward development to the blastocyst stage in vitro. Carry-over of donor zygote mtDNA is minimal, so the technique could potentially prevent the transmission of mtDNA disease in humans. Mutations in mitochondrial DNA (mtDNA) are a common cause of human genetic disease. It has been shown in non-human primates that nuclear transfer techniques might be an approach to prevent the transmission of mtDNA mutations. The proof of principle has now been extended to human embryos. Pronuclei were transferred between human zygotes, which developed onwards to the blastocyst stage in vitro. Carry-over of mtDNA from the donor zygotes to the recipients was minimal. Mutations in mitochondrial DNA (mtDNA) are a common cause of genetic disease. Pathogenic mutations in mtDNA are detected in approximately 1 in 250 live births1,2,3 and at least 1 in 10,000 adults in the UK are affected by mtDNA disease4. Treatment options for patients with mtDNA disease are extremely limited and are predominantly supportive in nature. Mitochondrial DNA is transmitted maternally and it has been proposed that nuclear transfer techniques may be an approach for the prevention of transmission of human mtDNA disease5,6. Here we show that transfer of pronuclei between abnormally fertilized human zygotes results in minimal carry-over of donor zygote mtDNA and is compatible with onward development to the blastocyst stage in vitro. By optimizing the procedure we found the average level of carry-over after transfer of two pronuclei is less than 2.0%, with many of the embryos containing no detectable donor mtDNA. We believe that pronuclear transfer between zygotes, as well as the recently described metaphase II spindle transfer, has the potential to prevent the transmission of mtDNA disease in humans.
0
Citation458
0
Save
Load More