TG
Thomas Günther
Author with expertise in Viral-Related Cancers in Immunocompromised Patients
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
5
h-index:
21
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A comparative epigenome analysis of gammaherpesviruses suggests cis-acting sequence features as critical mediators of rapid polycomb recruitment

Thomas Günther et al.May 15, 2019
Abstract Latent Kaposi sarcoma-associated herpesvirus (KSHV) genomes rapidly acquire distinct patterns of the activating histone modification H3K4-me3 as well as repressive H3K27-me3 marks, a modification linked to transcriptional silencing by polycomb repressive complexes (PRC). Interestingly, PRCs have recently been reported to restrict viral gene expression in a number of other viral systems, suggesting they may play a broader role in controlling viral chromatin. If so, it is an intriguing possibility that latency establishment may result from viral subversion of polycomb-mediated host responses to exogenous DNA. To investigate such scenarios we sought to establish whether rapid repression by PRC constitutes a general hallmark of herpesvirus latency. For this purpose, we performed a comparative epigenome analysis of KSHV and the related murine gammaherpesvirus 68 (MHV-68). We demonstrate that, while latently replicating MHV-68 genomes readily acquire distinct patterns of activation-associated histone modifications upon de novo infection, they fundamentally differ in their ability to efficiently attract H3K27-me3 marks. Statistical analyses of ChIP-seq data from in vitro infected cells as well as in vivo latency reservoirs furthermore suggest that, whereas KSHV rapidly attracts PRCs in a genome-wide manner, H3K27-me3 acquisition by MHV-68 genomes may require spreading from initial seed sites to which PRC are recruited as the result of an inefficient or stochastic recruitment, and that immune pressure may be needed to select for latency pools harboring PRC-silenced episomes in vivo . Using co-infection experiments and recombinant viruses, we also show that KSHV’S ability to rapidly and efficiently acquire H3K27-me3 marks does not depend on the host cell environment or unique properties of the KSHV-encoded LANA protein, but rather requires specific cis-acting sequence features. We show that the non-canonical PRC1.1 component KDM2B, a factor which binds to unmethylated CpG motifs, is efficiently recruited to KSHV genomes, indicating that CpG island characteristics may constitute these features. In accord with the fact that, compared to MHV-68, KSHV genomes exhibit a fundamentally higher density of CpG motifs, we furthermore demonstrate efficient acquisition of H2AK119-ub by KSHV and H3K36-me2 by MHV-68 (but not vice versa), furthermore supporting the notion that KSHV genomes rapidly attract PRC1.1 complexes in a genome-wide fashion. Collectively, our results suggest that rapid PRC silencing is not a universal feature of viral latency, but that some viruses may rather have adopted distinct genomic features to specifically exploit default host pathways that repress epigenetically naive, CpG-rich DNA. Author Summary During herpesvirus latency, viral genomes persists as partially repressed nuclear episomes which do not express genes required for progeny production. Latently infected cells not only form a reservoir of lifelong persistence but also represent the driving force in cancers associated with tumorigenic herpesviruses such as KSHV. Hence, it is fundamentally important to understand the mechanisms controlling latency. We have shown previously that latent KSHV episomes rapidly acquire H3K27-me3, a histone mark associated with polycomb repressive complexes (PRC). PRCs play a pivotal role in the control of developmental genes but are also involved in the pathogenesis of several tumors. We here investigated whether PRC-repression represents a general feature of herpesvirus latency. By performing side-by-side analyses of KSHV and the related MHV-68 we show that the latter indeed has a fundamentally lower propensity to acquire H3K27-me3, and that KSHV’S ability to rapidly attract this mark is most likely the result of a specific sequence composition that promotes recruitment of non-canonical PRC1 (a complex which is important for the regulation of cellular CpG islands). Our results have widespread implications for nuclear DNA viruses and suggest that some viruses have specifically evolved to exploit common host responses to epigenetically naive DNA.
0
Citation5
0
Save
0

High-resolution analysis of Merkel Cell Polyomavirus in Merkel Cell Carcinoma reveals distinct integration patterns and suggests NHEJ and MMBIR as underlying mechanisms

Manja Czech‐Sioli et al.Apr 23, 2020
Abstract Merkel Cell Polyomavirus (MCPyV) is the etiological agent of the majority of Merkel Cell Carcinomas (MCC). MCPyV positive MCCs harbor integrated, defective viral genomes that constitutively express viral oncogenes. Which molecular mechanisms promote viral integration, if distinct integration patterns exist, and if integration occurs preferentially at loci with specific chromatin states is unknown. We here combined short and long-read (nanopore) next-generation sequencing and present the first high-resolution analysis of integration site structure in MCC cell lines as well as primary tumor material. We find two main types of integration site structure: Linear patterns with chromosomal breakpoints that map closely together, and complex integration loci that exhibit local amplification of genomic sequences flanking the viral DNA. Sequence analysis suggests that linear patterns are produced during viral replication by integration of defective/linear genomes into host DNA double strand breaks via non-homologous end joining, NHEJ. In contrast, our data strongly suggest that complex integration patterns are mediated by microhomology-mediated break-induced replication, MMBIR. Furthermore, we show by ChIP-Seq and RNA-Seq analysis that MCPyV preferably integrates in open chromatin and provide evidence that viral oncogene expression is driven by the viral promoter region, rather than transcription from juxtaposed host promoters. Taken together, our data explain the characteristics of MCPyV integration and may also provide a model for integration of other oncogenic DNA viruses such as papillomaviruses. Author summary Integration of viral DNA into the host genome is a key event in the pathogenesis of many virus-induced cancers. One such cancer is Merkel cell carcinoma (MCC), a highly malignant tumor that harbors monoclonally integrated and replication-defective Merkel cell polyomavirus (MCPyV) genomes. Although MCPyV integration sites have been analyzed before, there is very little knowledge of the mechanisms that lead to mutagenesis and integration of viral genomes. We used multiple sequencing technologies and interrogation of chromatin states to perform a comprehensive characterization of MCPyV integration loci. This analysis allowed us to deduce the events that likely precede viral integration. We provide evidence that the mutations which result in the replication defective phenotype are acquired prior to integration and propose that the cellular DNA repair pathways non-homologous end joining (NHEJ) and microhomology-mediated break-induced replication (MMBIR) produce two principal MCPyV integration patterns (simple and complex, respectively). We show that, although MCPyV integrates predominantly in open chromatin regions, viral oncogene expression is independent of host promoters and driven by the viral promotor region. Our findings are important since they can explain the mechanisms of MCPyV integration. Furthermore, our model may also apply to papillomaviruses, another clinically important family of oncogenic DNA viruses.
0

Oncogenic herpesvirus engages the endothelial transcription factors SOX18 and PROX1 to increase viral genome copies and virus production

Silvia Gramolelli et al.Aug 27, 2019
Kaposi sarcoma (KS) is a tumour of endothelial origin caused by KS herpesvirus (KSHV) infection and suggested to originate from lymphatic endothelial cells (LECs). While KSHV establishes latency in virtually all susceptible cell types, LECs support a spontaneous lytic gene expression program with high viral genome copies and release of infectious virus. Here, we investigated the role of PROX1, SOX18 and COUPTF2, drivers of lymphatic endothelial fate during embryogenesis, in this unique KSHV infection program. We found that these factors were co-expressed in KS tumours with the viral lytic marker K8.1, and that SOX18 and PROX1 regulate KSHV infection via two independent mechanisms. SOX18 binds to the viral origins of replication and its depletion or chemical inhibition significantly reduced the KSHV genome copies in LECs. PROX1 interacts with ORF50, the initiator of the lytic cascade, increases lytic gene expression and virus production and its depletion reduces KSHV spontaneous lytic reactivation. Upon lytic replication, PROX1 binds to the KSHV genome in the promoter region of ORF50 and enhances its transactivation activity. These results demonstrate the importance of two endothelial transcription factors in the regulation of the KSHV life cycle and introduce SOX18 inhibition as a potential, novel therapeutic modality for KS.