DD
Danya Dean
Author with expertise in Epidemiology and Treatment of Chagas Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
11
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Spatial metabolomics identifies localized chemical changes in heart tissue during chronic cardiac Chagas disease

Danya Dean et al.Jun 29, 2020
Abstract Chagas disease (CD) is one of thirteen neglected tropical diseases caused by the parasite Trypanosoma cruzi . CD is a vector-borne disease transmitted by triatomines but CD can also be transmitted through blood transfusions, organ transplants and congenital transmission. While endemic to Latin America, T. cruzi infects 7-8 million people worldwide and can induce severe cardiac symptoms including apical aneurysms, thromboembolisms and arrhythmias during the chronic stage of CD. However, these cardiac clinical manifestations and CD disease pathogenesis are not fully understood. Using spatial metabolomics (chemical cartography), we sought to understand the localized impact of infection on the cardiac metabolome of mice chronically infected with two divergent T. cruzi strains. Our data showed chemical differences in localized cardiac regions upon chronic T. cruzi infection, indicating that parasite infection changes the host metabolome at select sites in chronic CD. These sites were distinct from the sites of highest parasite burden. In addition, we identified acylcarnitines and phosphocholines as discriminatory chemical families within each heart region, comparing infected and uninfected samples. Overall, our study indicated overall and positional metabolic differences common to infection with different T. cruzi strains, and identified select infection-modulated pathways. These results provide further insight into CD pathogenesis and demonstrate the advantage of a spatial perspective to understand infectious disease tropism. Author Summary Chagas disease (CD) is a tropical disease caused by the parasite Trypanosoma cruzi . CD originated in South America; however, there are now 7-8 million people infected worldwide due to population movements. CD is transmitted through a triatomine vector, organ transplants, blood transfusions and congenital transmission. It occurs in two stages, an acute stage (usually asymptomatic) and the chronic stage. Chronic stage CD presents with severe cardiac symptoms such as heart failure, localized aneurysms and cardiomyopathy. Unfortunately, what causes severe cardiac symptoms in some individuals in chronic CD is not fully understood. Therefore, we used liquid chromatography-tandem mass spectrometry to analyze the heart tissue of chronically T. cruzi- infected and uninfected mice, to understand the impact of infection on the tissue metabolome. We identified discriminatory small molecules related to T. cruzi infection. We also determined that regions with the highest parasite burden are distinct from the regions with the largest changes in overall metabolite profile; these locations of high metabolic perturbation provide a molecular mechanism to why localized cardiac symptoms occur in CD. Overall, our work gives insight to chronic cardiac CD symptom development and shapes a framework for novel treatment and biomarker development.
9
Citation10
0
Save
1

Persistent biofluid small molecule alterations induced byTrypanosoma cruziinfection are not restored by antiparasitic treatment

Danya Dean et al.Jun 3, 2023
Chagas Disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry analysis of clinically-accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status, across mouse and parasite genotypes. Metabolites perturbed by infection in the urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had comparable overall urine metabolome to mice that failed to clear parasites. These results match with clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease. Overall, this study provides insights into new small molecule-based CD diagnostic methods and a new approach to assess functional treatment response.
1

Spatial metabolomics reveals localized impact of influenza virus infection on the lung tissue metabolome

Danya Dean et al.Nov 23, 2021
Abstract The influenza virus (IAV) is a major cause of respiratory disease, with significant infection increases in pandemic years. Vaccines are a mainstay of IAV prevention, but are complicated by consideration of IAV’s vast strain diversity, manufacturing and vaccine uptake limitations. While antivirals may be used for treatment of IAV, they are most effective in early stages of the infection and several virus strains have become drug resistant. Therefore, there is a need for advances in IAV treatment, especially host-directed, personalized therapeutics.Given the spatial dynamics of IAV infection and the relationship between viral spatial distribution and disease severity, a spatial approach is necessary to expand our understanding of IAV pathogenesis. We used spatial metabolomics to address this issue. Spatial metabolomics combines liquid chromatography-tandem mass spectrometry of metabolites extracted from systematic organ sections, 3D models and computational techniques, to develop spatial models of metabolite location and their role in organ function and disease pathogenesis. In this project, we analyzed plasma and systematically sectioned lung tissue samples from uninfected or infected mice. Spatial mapping of sites of metabolic perturbations revealed significantly lower metabolic perturbation in the trachea compared to other lung tissue sites. Using random forest machine learning, we identified metabolites that responded differently in each lung position based on infection, including specific amino acids, lipids and lipid-like molecules, and nucleosides. These results support the implementation of spatial metabolomics to understand metabolic changes upon IAV infection and to identify candidate pathways to be targeted for IAV therapeutics. Importance The influenza virus is a major health concern. Over 1 billion people become infected annually despite the wide distribution of vaccines, and antiviral agents are insufficient to address current clinical needs. In this study, we used spatial metabolomics to understand changes in the lung and plasma metabolome of mice infected with influenza A virus, compared to uninfected controls. We determined metabolites altered by infection in specific lung tissue sites and distinguished metabolites perturbed by infection between lung tissue and plasma samples. Our findings highlight the importance of a spatial approach to understanding the intersection between lung metabolome, viral infection and disease severity. Ultimately, this approach will expand our understanding of respiratory disease pathogenesis and guide the development of novel host-directed therapeutics.