Abstract Gene duplication is increasingly recognized as an important mechanism for the origination of new genes, as revealed by comparative genomic analysis. However, the ways in which new duplicate genes contribute to phenotypic evolution remain largely unknown, especially in plants, owing to a lack of experimental and phenotypic data. In this study, we identified the new gene Exov, derived from a partial gene region duplication of its parental gene Exov-L , which is a member of an exonuclease family, into a different chromosome in Arabidopsis thaliana . We experimentally investigated the phenotypic effects of Exov and Exov-L in an attempt to understand how the new gene diverged from the parental copy and contributes to phenotypic evolution. Evolutionary analysis demonstrated that Exov is a species-specific gene that originated within the last 3.5 million years and shows strong signals of positive selection. Unexpectedly, RNAseq analyses reveal that the new gene, despite its young age, has acquired a large number of novel direct and indirect interactions in which the parental gene does not engage. This is consistent with a high, selection-driven substitution rate in the protein sequence encoded by Exov in contrast to the slowly evolving Exov-L , suggesting an important role for Exov in phenotypic evolution. We analyzed phenotypic effects of exov and exov-l single T-DNA-insertion mutants;double exov, exov-l T-DNA insertion mutants; and CRISPR/Cas9-mediated exov crp and exov-l crp knockouts on seven morphological traits in both the new and parental genes. We detected significant segregation of morphological changes for all seven traits when assessed in terms of single mutants, as well as morphological changes for seven traits associated with segregation of double exov, exov-l mutants. Substantial divergence of phenotypic effects between new and parental genes was revealed by principal component analyses, suggesting neofunctionalization in the new gene. These results reveal a young gene that plays critical roles in biological processes that underlie morphological and developmental evolution in Arabidopsis thaliana .