LC
Loïc Cunff
Author with expertise in Genetic and Environmental Factors in Grapevine Cultivation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
16
h-index:
21
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Genome-wide association and prediction study in grapevine deciphers the genetic architecture of multiple traits and identifies genes under many new QTLs

Timothée Flutre et al.Sep 10, 2020
Abstract To cope with the challenges faced by agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennials such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait locus (QTL) in bi-parental crosses, we exploited a diverse panel of 279 Vitis vinifera L. cultivars. This panel planted in five blocks in the vineyard was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms (SNPs) by combining an 18K microarray and genotyping-by-sequencing (GBS). The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via GBS markedly increased the proportion of genetic variance explained by SNPs, and two multi-SNP models identified QTLs not found by a SNP-by-SNP model. Overall, 489 reliable QTLs were detected for 41% more response variables than by a SNP-by-SNP model with microarray-only SNPs, many new ones compared to the results from bi-parental crosses. Prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as QTL and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application in breeding are discussed.
1
Citation7
0
Save
11

Across-population genomic prediction in grapevine opens up promising prospects for breeding

Charlotte Brault et al.Jul 30, 2021
Abstract Crop breeding involves two selection steps: choosing progenitors and selecting offspring within progenies. Genomic prediction, based on genome-wide marker estimation of genetic values, could facilitate these steps. However, its potential usefulness in grapevine ( Vitis vinifera L.) has only been evaluated in non-breeding contexts mainly through cross-validation within a single population. We tested across-population genomic prediction in a more realistic breeding configuration, from a diversity panel to ten bi-parental crosses connected within a half-diallel mating design. Prediction quality was evaluated over 15 traits of interest (related to yield, berry composition, phenology and vigour), for both the average genetic value of each cross (cross mean) and the genetic values of individuals within each cross (individual values). Genomic prediction in these conditions was found useful: for cross mean, average per-trait predictive ability was 0.6, while per-cross predictive ability was halved on average, but reached a maximum of 0.7. Mean predictive ability for individual values within crosses was 0.26, about half the within-half-diallel value taken as a reference. For some traits and/or crosses, these across-population predictive ability values are promising for implementing genomic selection in grapevine breeding. This study also provided key insights on variables affecting predictive ability. Per-cross predictive ability was well predicted by genetic distance between parents and when this predictive ability was below 0.6, it was improved by training set optimization. For individual values, predictive ability mostly depended on trait-related variables (magnitude of the cross effect and heritability). These results will greatly help designing grapevine breeding programs assisted by genomic prediction.
11
Citation5
0
Save
9

Beyond the foliage: Using non-destructive multimodal 3D imaging and AI to phenotype and diagnose trunk diseases

Romain Fernandez et al.Jun 10, 2022
ABSTRACT Quantifying healthy and degraded inner tissues in plants is of great interest in agronomy, for example, to assess plant health and quality and monitor physiological traits or diseases. However, detecting functional and degraded plant tissues in-vivo without harming the plant is extremely challenging. New solutions are needed in ligneous and perennial species, for which the sustainability of plantations is crucial. To tackle this challenge, we developed a novel approach based on multimodal 3D imaging and Artificial Intelligence (AI)-based image processing that allowed a noninvasive diagnosis of inner tissues in living plants. The method was successfully applied to the grapevine ( Vitis vinifera L.) in vineyards where sustainability was threatened by trunk diseases, while the sanitary status of vines cannot be ascertained without injuring the plants. By combining MRI and X-ray CT 3D imaging with an automatic voxel classification, we could discriminate intact, degraded, and white rot tissues with a mean global accuracy of over 91%. Each imaging modality contribution to tissue detection was evaluated, and we identified quantitative structural and physiological markers characterizing wood degradation steps. The combined study of inner tissue distribution versus external foliar symptom history demonstrated that white rot and intact tissue contents are key measurements in evaluating vines’ sanitary status. We finally proposed a model for an accurate trunk disease diagnosis in grapevine. This work opens new routes for precision agriculture and in-situ monitoring of wood quality and plant health across plant species.
9
Paper
Citation2
0
Save
10

Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection to cope with climate change affecting grapevine

Charlotte Brault et al.Oct 28, 2020
ABSTRACT Viticulture has to cope with climate change and decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a potential key to meet this challenge, and genomic prediction is a promising tool to accelerate breeding programs, multivariate methods being potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and allowing the identification of positional candidate genes. We applied several methods, interval mapping as well as univariate and multivariate penalized regression, in a bi-parental grapevine progeny, in order to compare their ability to predict genotypic values and detect QTLs. We used a new denser genetic map, simulated two traits under four QTL configurations, and re-analyzed 14 traits measured in semi-controlled conditions under different watering conditions. Using simulations, we recommend the penalized regression method Elastic Net (EN) as a default for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than interval mapping for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using experimental data, penalized regression methods proved as very efficient for intra-population prediction whatever the genetic architecture of the trait, with accuracies reaching 0.68. These methods applied on the denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. These methods can be applied to other traits and species.
10
Citation1
0
Save
1

Interest of phenomic prediction as an alternative to genomic prediction in grapevine

Charlotte Brault et al.Dec 17, 2021
Abstract Phenomic prediction has been defined as an alternative to genomic prediction by using spectra instead of molecular markers. A reflectance spectrum reflects the biochemical composition within a tissue, under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture genetic signal. This new methodology has been successfully applied in several cereal species but little is known so far about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits, mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine, using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits. First, we characterized the genetic signal in spectra and under which condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability. We found that the co-inertia between spectra and genomic data was stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and half-diallel populations, respectively. Differences between populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diversity panel and 0.35 for the half-diallel. For both populations, there was a correlation across traits between predictive ability of genomic and phenomic prediction, with a slope around 1 and an intercept of −0.2, thus suggesting that phenomic prediction could be applied for any trait.
1
Citation1
0
Save
5

Enhancing grapevine breeding efficiency through genomic prediction and selection index

Charlotte Brault et al.Aug 3, 2023
Abstract Grapevine ( Vitis vinifera ) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy mildews. However, the traditional process remains time-consuming, taking 20 to 25 years, and demands the evaluation of new traits to enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype and was carried out on a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a methodology using molecular markers to predict genotypic values. In our study, we focused on two existing grapevine breeding programs: Rosé wine and Cognac production. In these programs, several families were created through crosses of emblematic and inter-specific resistant varieties to powdery and downy mildews. 30 traits were evaluated for each program, using two genomic prediction methods: GBLUP (Genomic Best Linear Unbiased Predictor) and LASSO (Least Absolute Shrinkage Selection Operator). The results revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait characteristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.