MU
Mohammed Uddin
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
2,576
h-index:
41
/
i10-index:
72
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

Ryan Yuen et al.Mar 6, 2017
Yuen et al. developed a cloud-based database with 5,205 whole genomes from families with autism spectrum disorder (ASD). They identified 18 new candidate ASD-risk genes and approximately 100 risk genes and copy-number loci, which account for 11% of the cases. They also found that individuals bearing mutations in ASD-risk genes had lower adaptive ability. We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10−4). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.
0
Citation766
0
Save
0

Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing

Yong‐Hui Jiang et al.Jul 11, 2013
Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms. Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.
0
Citation444
0
Save
0

Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder

Kristiina Tammimies et al.Sep 1, 2015
The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study.To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic.The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6).All probands underwent CMA, with WES performed for 95 proband-parent trios.The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups.Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text].Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.
0
Citation384
0
Save
0

Genome-wide characteristics of de novo mutations in autism

Ryan Yuen et al.Aug 3, 2016
De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10-10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10-13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10-24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10-9; OR=1.84), of which 15.6% (p=4.3×10-3) and 22.5% (p=7.0×10-5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD.
0
Citation217
0
Save
10

Host transcriptomic profiling of COVID-19 patients with mild, moderate, and severe clinical outcomes

Ruchi Jain et al.Sep 28, 2020
Abstract Characterizing key molecular and cellular pathways involved in COVID-19 is essential for disease prognosis and management. We perform shotgun transcriptome sequencing of human RNA obtained from nasopharyngeal swabs of patients with COVID-19, and identify a molecular signature associated with disease severity. Specifically, we identify globally dysregulated immune related pathways, such as cytokine-cytokine receptor signaling, complement and coagulation cascades, JAK-STAT, and TGF-β signaling pathways in all, though to a higher extent in patients with severe symptoms. The excessive release of cytokines and chemokines such as CCL2, CCL22, CXCL9 and CXCL12 and certain interferons and interleukins related genes like IFIH1, IFI44, IFIT1 and IL10 were significantly higher in patients with severe clinical presentation compared to mild and moderate presentations. Moreover, early induction of the TGF-β signaling pathway might be the primary cause of pulmonary fibrosis in patients with severe disease. Differential gene expression analysis identified a small set of regulatory genes that might act as strong predictors of patient outcome. Our data suggest that rapid transcriptome analysis of nasopharyngeal swabs can be a powerful approach to quantify host molecular response and may provide valuable insights into COVID-19 pathophysiology.
10
Citation2
0
Save