AD
Andrea Disanza
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
667
h-index:
36
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
29

Cargo-specific recruitment in clathrin and dynamin-independent endocytosis

Paulina Moreno-Layseca et al.Oct 5, 2020
Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis, and cancer invasion and is often hijacked by viral infections 1 . Unlike clathrin-mediated endocytosis, which exploits cargo-specific adaptors for selective protein internalization, the clathrin and dynamin-independent endocytic pathway (CLIC-GEEC, CG-pathway) has until now been considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids 2,3 . Although the core molecular players of CG endocytosis have been recently defined, no cargo-specific adaptors are known and evidence of selective protein uptake into the pathway is lacking 3 . Here, we identify the first cargo-specific adaptor for CG-endocytosis and demonstrate its clinical relevance in breast cancer progression. By combining unbiased molecular characterization and super-resolution imaging, we identified the actin-binding protein swiprosin-1 (EFHD2) as a cargo-specific adaptor regulating integrin internalization via the CG-pathway. Swiprosin-1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery, IRSp53 and actin. Swiprosin-1 is critical for integrin endocytosis, but not for other CG-cargo and supports integrin-dependent cancer cell migration and invasion, with clinically relevant implications for breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG-pathway and opens the possibility to discover more adaptors regulating it.
29
Citation7
0
Save
2

Ena/VASP clustering at microspike tips involves Lamellipodin but not I-BAR proteins, and absolutely requires unconventional Myosin-X

Thomas Pokrant et al.May 12, 2022
Abstract Sheet-like membrane protrusions at the leading edge, termed lamellipodia, drive 2D-cell migration using active actin polymerization. Microspikes comprise actin-filament bundles embedded within lamellipodia, but the molecular mechanisms driving their formation and their potential functional relevance have remained elusive. Microspike formation requires the specific activity of clustered Ena/VASP proteins at their tips to enable processive actin assembly in the presence of capping protein, but the factors and mechanisms mediating Ena/VASP clustering are poorly understood. Systematic analyses of B16-F1 melanoma mutants lacking potential candidate proteins revealed that neither inverse BAR-domain proteins, nor lamellipodin or Abi are essential for clustering, although they differentially contribute to lamellipodial VASP accumulation. In contrast, unconventional myosin-X (MyoX) identified here as proximal to VASP was obligatory for Ena/VASP clustering and microspike formation. Interestingly, and despite the invariable distribution of other relevant marker proteins, the width of lamellipodia in MyoX-KO mutants was significantly reduced as compared to B16-F1 control, suggesting that microspikes contribute to lamellipodium stability. Consistently, MyoX removal caused marked defects in protrusion and random 2D-cell migration. Strikingly, Ena/VASP-deficiency also uncoupled MyoX cluster dynamics from actin assembly in lamellipodia, establishing their tight functional association in microspike formation. Significance Statement Unlike filopodia that protrude well beyond the cell periphery and are implicated in sensing, morphogenesis and cell-to-cell communication, the function of microspikes consisting of actin-filament bundles fully embedded within lamellipodia is less clear. Microspike formation involves specific clustering of Ena/VASP family members at filament-barbed ends to enable processive actin polymerization in the presence of capping protein, but the factors and mechanisms mediating Ena/VASP clustering have remained unknown. Here, we systematically analyzed these processes in genetic knockout mutants derived from B16-F1 cells and show that Ena/VASP clustering at microspike tips involves Lamellipodin, but not inverse BAR-domain proteins, and strictly requires unconventional Myosin-X. Complete loss of microspikes was confirmed with CRISPR/Cas9-mediated MyoX knockout in Rat2 fibroblasts, excluding cell type-specific effects.
2
Citation4
0
Save
0

Small GTPases and BAR domain proteins regulate branched actin to make clathrin and dynamin independent endocytic vesicles

Mugdha Sathe et al.Jul 31, 2017
Numerous endocytic pathways operate simultaneously at the cell surface. Here we focus on the molecular machinery involved in the generation of endocytic vesicles of the clathrin and dynamin-independent CLIC/GEEC (CG) pathway. This pathway internalises many GPI-anchored proteins and a large fraction of the fluid-phase in different cell types. We developed a real-time TIRF assay using pH-sensitive GFP-GPI to identify nascent CG endocytic sites. The temporal profile of known CG pathway modulators showed that ARF1/GBF1 (GTPase/GEF pair) and CDC42 (RhoGTPase) are recruited sequentially to CG endocytic sites, ~60s and ~9s prior to scission. Using a limited RNAi screen, we found several BAR domain proteins affecting CG endocytosis and focused on IRSp53 and PICK1 that have interactions with CDC42 and ARF1 respectively. IRSp53, an I-BAR domain containing protein, was recruited to the plasma membrane at the site of forming CG endocytic vesicles and in its absence, nascent endocytic CLICs, did not form. The requirement for actin polymerization in the CG pathway suggested a role for nucleators of actin polymerization, and ARP2/3 was found enriched at the site of the forming endocytic vesicle. PICK1, a BAR domain containing protein and the ARP2/3 inhibitor is recruited at an early stage along with ARP2/3, but is removed from the endocytic site coincident with CDC42 recruitment and a burst of F-actin polymerization. This study provides a spatio-temporal understanding of the molecular machinery necessary to build a CG endocytic vesicle.
1

A mechanosensing mechanism mediated by IRSp53 controls plasma membrane shape homeostasis at the nanoscale

Xarxa Quiroga et al.Aug 3, 2021
Abstract As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nano-scale topography. Here we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nano-scale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by the I-BAR protein IRSp53, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios. Teaser Cell stretch cycles generate PM evaginations of ≈100 nm which are sensed by IRSp53, triggering a local event of actin polymerization that flattens and recovers PM shape.
0

IRSp53 shapes the plasma membrane and controls polarized transport at the nascent lumen during epithelial morphogenesis

Sara Bisi et al.Dec 3, 2019
Establishment of apical-basal cell polarity is necessary for generation of luminal and tubular structures during epithelial morphogenesis. Molecules acting at the membrane/ actin interface are expected to be crucial in governing these processes. Here, we show that the I-BAR-containing IRSp53 protein is restricted to the luminal side of epithelial cells of various glandular organs, and is specifically enriched in renal tubules in human, mice, and zebrafish. Using three-dimensional cultures of renal MDCK and intestinal Caco-2 cysts, we show that IRSp53 is recruited early after the first cell division along the forming apical lumen, and is essential for formation of a single lumen and for positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 directly binds to and controls localization of the inactive form of the small GTPase RAB35, a tethering factor for apical determinants. The interaction of IRSp53 with the actin capping protein EPS8 is critical for restricting IRSp53 localization. Correlative light and electron microscopy shows that IRSp53 loss perturbs the shape and continuity of the opposing apical membrane during the initial phase of lumenogenesis, which leads to preservation of multiple cytoplasmic bridges that interrupt the continuity of the nascent lumen. At the organism level, genetic removal of IRSp53 results in abnormal renal tubulogenesis, with defects in tubular polarity and architectural organization in both IRSp53 zebrafish mutant lines and IRSp53-KO murine models. Thus, IRSp53 acts as a platform for spatiotemporal regulation of assembly of the multi-protein complexes that shape the luminal membrane during the early steps of epithelial lumen morphogenesis.