VW
Vidar Wennevik
Author with expertise in Importance and Conservation of Freshwater Biodiversity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
453
h-index:
27
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The major threats to Atlantic salmon in Norway

Torbjørn Forseth et al.Feb 15, 2017
Abstract Atlantic salmon (Salmo salar) is an economically and culturally important species. Norway has more than 400 watercourses with Atlantic salmon and supports a large proportion of the world’s wild Atlantic salmon. Atlantic salmon are structured into numerous genetically differentiated populations, and are therefore managed at the population level. Long-distance migrations between freshwater and ocean habitats expose Atlantic salmon to multiple threats, and a number of anthropogenic factors have contributed to the decline of Atlantic salmon during the last decades. Knowledge on the relative importance of the different anthropogenic factors is vital for prioritizing management measures. We developed a semi-quantitative 2D classification system to rank the different anthropogenic factors and used this to assess the major threats to Norwegian Atlantic salmon. Escaped farmed salmon and salmon lice from fish farms were identified as expanding population threats, with escaped farmed salmon being the largest current threat. These two factors affect populations to the extent that they may be critically endangered or lost, with a large likelihood of causing further reductions and losses in the future. The introduced parasite Gyrodactylus salaris, freshwater acidification, hydropower regulation and other habitat alterations were identified as stabilized population threats, which have contributed to populations becoming critically endangered or lost, but with a low likelihood of causing further loss. Other impacts were identified as less influential, either as stabilized or expanding factors that cause loss in terms of number of returning adults, but not to the extent that populations become threatened. Management based on population specific reference points (conservation limits) has reduced exploitation in Norway, and overexploitation was therefore no longer regarded an important impact factor. The classification system may be used as a template for ranking of anthropogenic impact factors in other countries and as a support for national and international conservation efforts.
0
Paper
Citation253
0
Save
0

The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males

Fernando Ayllón et al.Nov 9, 2015
Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1–5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33–36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
0
Citation192
0
Save
0

Thevgll3locus controls age at maturity in wild and domesticated Atlantic salmon (Salmo salarL.) males

Fernando Ayllón et al.Aug 17, 2015
Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a GWAS using a pool sequencing approach (20 individuals per river and trait) of salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNP in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild salmon and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. This study demonstrates a single locus playing a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in human ( Homo sapiens ), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
0
Citation6
0
Save
0

Life history genomic regions explain differences in Atlantic salmon marine diet specialization

Tutku Aykanat et al.Sep 1, 2019
1. Animals employ various foraging strategies along their ontogeny to acquire energy, and with varying degree of efficiencies, to support growth, maturation and subsequent reproduction events. Individuals that can efficiently acquire energy early are more likely to mature at an earlier age, as a result of faster energy gain which can fuel maturation and reproduction.2. We aimed to test the hypothesis that heritable resource acquisition variation that co-varies with efficiency along the ontogeny would influence maturation timing of individuals.3. To test this hypothesis, we utilized Atlantic salmon as a model which exhibit a simple, hence trackable, genetic control of maturation age. We then monitored the variation in diet acquisition (quantified as the stomach fullness and composition) of individuals with different ages, and linked it genomic regions (haploblocks) that were previously identified to be associated with age-at-maturity.4. Consistent with the hypothesis, we demonstrated that one of the life history genomic regions tested ( six6 ) was indeed associated with age-dependent differences in stomach fullness. Prey composition was marginally linked to both genomic regions ( six6 and vgll3 ). We further showed Atlantic salmon switched to the so-called “feast and famine” strategy along the ontogeny, where older age groups exhibited heavier stomach content, but that came at the expense of running on empty more often.5. These results suggest genetic variation underlying resource utilization variation may explain the genetic basis of age structure in Atlantic salmon. Given that ontogenetic diet has a genetic component and the strong spatial diversity associated with these genomic regions, we predict populations with diverse maturation age will have diverse evolutionary responses to future changes in marine food-web structures.