MA
Markus Almén
Author with expertise in Population Genetic Structure and Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
2,385
h-index:
28
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin

Markus Almén et al.Aug 13, 2009
Membrane proteins form key nodes in mediating the cell's interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins.Here we mined the human proteome and identified the membrane proteome subset using three prediction tools for alpha-helices: Phobius, TMHMM, and SOSUI. This dataset was reduced to a non-redundant set by aligning it to the human genome and then clustered with our own interactive implementation of the ISODATA algorithm. The genes were classified and each protein group was manually curated, virtually evaluating each sequence of the clusters, applying systematic comparisons with a range of databases and other resources. We identified 6,718 human membrane proteins and classified the majority of them into 234 families of which 151 belong to the three major functional groups: receptors (63 groups, 1,352 members), transporters (89 groups, 817 members) or enzymes (7 groups, 533 members). Also, 74 miscellaneous groups with 697 members were determined. Interestingly, we find that 41% of the membrane proteins are singlets with no apparent affiliation or identity to any human protein family. Our results identify major differences between the human membrane proteome and the ones in unicellular organisms and we also show a strong bias towards certain membrane topologies for different functional classes: 77% of all transporters have more than six helices while 60% of proteins with an enzymatic function and 88% receptors, that are not GPCRs, have only one single membrane spanning alpha-helix. Further, we have identified and characterized new gene families and novel members of existing families.Here we present the most detailed roadmap of gene numbers and families to our knowledge, which is an important step towards an overall classification of the entire human proteome. We estimate that 27% of the total human proteome are alpha-helical transmembrane proteins and provide an extended classification together with in-depth investigations of the membrane proteome's functional, structural, and evolutionary features.
0
Citation554
0
Save
0

Acute Sleep Deprivation Enhances the Brain's Response to Hedonic Food Stimuli: An fMRI Study

Christian Benedict et al.Jan 18, 2012
There is growing recognition that a large number of individuals living in Western society are chronically sleep deprived. Sleep deprivation is associated with an increase in food consumption and appetite. However, the brain regions that are most susceptible to sleep deprivation-induced changes when processing food stimuli are unknown. Our objective was to examine brain activation after sleep and sleep deprivation in response to images of food. Twelve normal-weight male subjects were examined on two sessions in a counterbalanced fashion: after one night of total sleep deprivation and one night of sleep. On the morning after either total sleep deprivation or sleep, neural activation was measured by functional magnetic resonance imaging in a block design alternating between high- and low-calorie food items. Hunger ratings and morning fasting plasma glucose concentrations were assessed before the scan, as were appetite ratings in response to food images after the scan. Compared with sleep, total sleep deprivation was associated with an increased activation in the right anterior cingulate cortex in response to food images, independent of calorie content and prescan hunger ratings. Relative to the postsleep condition, in the total sleep deprivation condition, the activation in the anterior cingulate cortex evoked by foods correlated positively with postscan subjective appetite ratings. Self-reported hunger after the nocturnal vigil was enhanced, but importantly, no change in fasting plasma glucose concentration was found. These results provide evidence that acute sleep loss enhances hedonic stimulus processing in the brain underlying the drive to consume food, independent of plasma glucose levels. These findings highlight a potentially important mechanism contributing to the growing levels of obesity in Western society.
0

The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males

Fernando Ayllón et al.Nov 9, 2015
Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1–5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33–36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
0
Citation192
0
Save
0

Thevgll3locus controls age at maturity in wild and domesticated Atlantic salmon (Salmo salarL.) males

Fernando Ayllón et al.Aug 17, 2015
Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a GWAS using a pool sequencing approach (20 individuals per river and trait) of salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNP in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild salmon and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. This study demonstrates a single locus playing a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in human ( Homo sapiens ), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
0
Citation6
0
Save
0

A Model-Free Approach For Detecting Genomic Regions Of Deep Divergence Using The Distribution Of Haplotype Distances

Mats Pettersson et al.May 31, 2017
Recent advances in comparative genomics have revealed that divergence between populations is not necessarily uniform across all parts of the genome. There are examples of regions with divergent haplotypes that are substantially more different from each other that the genomic average. Typically, these regions are of interest, as their persistence over long periods of time may reflect balancing selection. However, they are hard to detect unless the divergent sub-populations are known prior to analysis. Here, we introduce HaploDistScan, an R-package implementing model-free detection of deep-divergence genomic regions based on the distribution of pair-wise haplotype distances, and show that it can detect such regions without use of a priori information about population sub-division. We apply the method to real-world data sets, from ruff and Darwin's finches, and show that we are able to recover known instances of balancing selection — originally identified in studies reliant on detailed phenotyping — using only genotype data. Furthermore, in addition to replicating previously known divergent haplotypes as a proof-of-concept, we identify novel regions of interest in the Darwin's finch genome and propose a plausible, data-driven evolutionary history for each novel locus individually. In conclusion, HaploDistScan requires neither phenotypic nor demographic input data, thus filling a gap in the existing set of methods for genome scanning, and provides a useful tool for identification of regions under balancing selection or similar evolutionary processes.