MB
Michelle Baker
Author with expertise in Viral Hemorrhagic Fevers and Zoonotic Infections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
1,865
h-index:
38
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sustainable development must account for pandemic risk

Moreno Marco et al.Feb 14, 2020
The United Nations (UN) launched the 2030 Agenda for Sustainable Development to address an ongoing crisis: human pressure leading to unprecedented environmental degradation, climatic change, social inequality, and other negative planet-wide consequences. This crisis stems from a dramatic increase in human appropriation of natural resources to keep pace with rapid population growth, dietary shifts toward higher consumption of animal products, and higher demand for energy (1, 2). There is an increased recognition that Sustainable Development Goals (SDGs) are linked to one another (3, 4), and priorities such as food production, biodiversity conservation, and climate change mitigation cannot be considered in isolation (5⇓⇓–8). Hence, understanding those dynamics is central to achieving the vision of the UN 2030 Agenda. Infectious zoonotic diseases typically emerge as a result of complex interactions between humans and wild and/or domestic animals. Image credit: Pixabay/sasint. But environmental change also has direct human health outcomes via infectious disease emergence, and this link is not customarily integrated into planning for sustainable development. Currently, 65 countries are engaged in the Global Health Security Agenda (GHSA) and are finalizing a strategic plan for the next five years (the GHSA 2024 Roadmap) to better prevent, detect, and respond to infectious disease outbreaks in alignment with SDGs 2 and 3 on food security and human health. Without an integrated approach to mitigating the disease emergence consequences of environmental change, countries’ abilities to achieve SDGs and GHSA targets will be compromised. Emerging infectious diseases (EIDs) such as Ebola, influenza, SARS, MERS, and, most recently, coronavirus (2019-nCoV) cause large-scale mortality and morbidity, disrupt trade and travel networks, and stimulate civil unrest (9). When local emergence leads to regional outbreaks or global pandemics, the economic impacts can be devastating: The SARS outbreak in 2003, the H1N1 pandemic in 2009, and … [↵][1]1To whom correspondence may be addressed. Email: moreno.dimarco{at}uniroma1.it. [1]: #xref-corresp-1-1
0
Paper
Citation275
0
Save
0

Unique Evolution of Antiviral Tetherin in Bats

Joshua Hayward et al.Apr 9, 2020
Abstract Bats are recognised as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically non-pathogenic in bats raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here we characterise the tetherin genes from 27 species of bats, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue-types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, a greater number than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals.
0
Citation6
0
Save
1

The swan genome and transcriptome: its not all black and white

Anjana Karawita et al.May 3, 2022
ABSTRACT The Australian black swan ( Cygnus atratus ) is an iconic species with contrasting plumage to that of the closely related Northern Hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious disease, notably infectious diseases from which Australia has been largely shielded. Indeed, unlike Mallard ducks and the mute swan ( Cygnus olor ), the black swan is extremely sensitive to severe highly pathogenic avian influenza (HPAI). Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. Here, we generate the first chromosome-length annotated black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We used these genomes and transcriptomes, to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to HPAI. We also implicate genetic differences in SLC45A2 in the iconic plumage of the Australian black swan. Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat the survival of the black swan would be in significant peril.
1
Citation1
0
Save
7

Faecal virome of the Australian grey-headed flying fox from urban/suburban environments contains novel coronaviruses, retroviruses and sapoviruses

Kate Brussel et al.Jul 6, 2022
ABSTRACT Bats are important reservoirs for viruses of public health and veterinary concern. Virus studies in Australian bats usually target the families Paramyxoviridae, Coronaviridae and Rhabdoviridae , with little known about their overall virome composition. We used metatranscriptomic sequencing to characterise the faecal virome of grey-headed flying foxes from three colonies in urban/suburban locations from two Australian states. We identified viruses from three mammalian-infecting ( Coronaviridae, Caliciviridae, Retroviridae ) and one possible mammalian-infecting ( Birnaviridae ) family. Of particular interest were a novel bat betacoronavirus (subgenus Nobecovirus ) and a novel bat sapovirus ( Caliciviridae ), the first identified in Australian bats, as well as a potentially exogenous retrovirus. The novel betacoronavirus was detected in two sampling locations 1,375 km apart and falls in a viral lineage likely with a long association with bats. This study highlights the utility of unbiased sequencing of faecal samples for identifying novel viruses and revealing broad-scale patterns of virus ecology and evolution.