AC
Andressa Costa
Author with expertise in Pancreatic Cancer Research and Treatment
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
290
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
83

The tumor microenvironment drives transcriptional phenotypes and their plasticity in metastatic pancreatic cancer

Srivatsan Raghavan et al.Aug 25, 2020
SUMMARY Bulk transcriptomic studies have defined classical and basal-like gene expression subtypes in pancreatic ductal adenocarcinoma (PDAC) that correlate with survival and response to chemotherapy; however, the underlying mechanisms that govern these subtypes and their heterogeneity remain elusive. Here, we performed single-cell RNA-sequencing of 23 metastatic PDAC needle biopsies and matched organoid models to understand how tumor cell-intrinsic features and extrinsic factors in the tumor microenvironment (TME) shape PDAC cancer cell phenotypes. We identify a novel cancer cell state that co-expresses basal-like and classical signatures, demonstrates upregulation of developmental and KRAS-driven gene expression programs, and represents a transitional intermediate between the basal-like and classical poles. Further, we observe structure to the metastatic TME supporting a model whereby reciprocal intercellular signaling shapes the local microenvironment and influences cancer cell transcriptional subtypes. In organoid culture, we find that transcriptional phenotypes are plastic and strongly skew toward the classical expression state, irrespective of genotype. Moreover, we show that patient-relevant transcriptional heterogeneity can be rescued by supplementing organoid media with factors found in the TME in a subtype-specific manner. Collectively, our study demonstrates that distinct microenvironmental signals are critical regulators of clinically relevant PDAC transcriptional states and their plasticity, identifies the necessity for considering the TME in cancer modeling efforts, and provides a generalizable approach for delineating the cell-intrinsic versus -extrinsic factors that govern tumor cell phenotypes.
83
Citation8
0
Save
0

Tumor-Immune Partitioning and Clustering (TIPC) algorithm reveals distinct signatures of tumor-immune cell interactions within the tumor microenvironment

Mai Lau et al.May 30, 2020
Abstract Growing evidence supports the importance of understanding tumor-immune spatial relationship in the tumor microenvironment in order to achieve precision cancer therapy. However, existing methods, based on oversimplistic cell-to-cell proximity, are largely confounded by immune cell density and are ineffective in capturing tumor-immune spatial patterns. Here we developed a novel computational algorithm, termed Tumor-Immune Partitioning and Clustering (TIPC), to offer an effective solution for spatially informed tumor subtyping. Our method could measure the extent of immune cell partitioning between tumor epithelial and stromal areas as well as the degree of immune cell clustering. Using a U.S. nation-wide colorectal cancer database, we showed that TIPC could determine tumor subtypes with unique tumor-immune spatial patterns that were significantly associated with patient survival and key tumor molecular features. We also demonstrated that TIPC was robust to parameter settings and readily applicable to different immune cell types. The capability of TIPC in delineating clinically relevant patient subtypes that encapsulate tumor-immune spatial relationship, immune density, and tumor morphology is expected to shed light on underlying immune mechanisms. Hence, TIPC can be a useful bioinformatics tool for effective characterization of the spatial composition of the tumor-immune microenvironment to inform precision immunotherapy.
0
Citation1
0
Save
3

Machine learning links T cell function and spatial localization to neoadjuvant immunotherapy and clinical outcome in pancreatic cancer

Katie Blise et al.Jan 1, 2023
Tumor molecular datasets are becoming increasingly complex, making it nearly impossible for humans alone to effectively analyze them. Here, we demonstrate the power of using machine learning to analyze a single-cell, spatial, and highly multiplexed proteomic dataset from human pancreatic cancer and reveal underlying biological mechanisms that may contribute to clinical outcome. A novel multiplex immunohistochemistry antibody panel was used to audit T cell functionality and spatial localization in resected tumors from treatment-naive patients with localized pancreatic ductal adenocarcinoma (PDAC) compared to a second cohort of patients treated with neoadjuvant agonistic CD40 (αCD40) monoclonal antibody therapy. In total, nearly 2.5 million cells from 306 tissue regions collected from 29 patients across both treatment cohorts were assayed, and more than 1,000 tumor microenvironment (TME) features were quantified. We then trained machine learning models to accurately predict αCD40 treatment status and disease-free survival (DFS) following αCD40 therapy based upon TME features. Through downstream interpretation of the machine learning models9 predictions, we found αCD40 therapy to reduce canonical aspects of T cell exhaustion within the TME, as compared to treatment-naive TMEs. Using automated clustering approaches, we found improved DFS following αCD40 therapy to correlate with the increased presence of CD44+ CD4+ Th1 cells located specifically within cellular spatial neighborhoods characterized by increased T cell proliferation, antigen-experience, and cytotoxicity in immune aggregates. Overall, our results demonstrate the utility of machine learning in molecular cancer immunology applications, highlight the impact of αCD40 therapy on T cells within the TME, and identify potential candidate biomarkers of DFS for αCD40-treated patients with PDAC.
0

Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma

Katherine Chung et al.Jun 21, 2019
Obesity is a major modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), yet how and when obesity contributes to PDAC progression is not well understood. Leveraging an autochthonous mouse model, we demonstrate a causal and reversible role for obesity in early PDAC progression, showing that obesity markedly enhances tumorigenesis, while genetic or dietary induction of weight loss intercepts cancer development. Bulk and single cell molecular analyses of human and murine samples define microenvironmental consequences of obesity that promote tumor development rather than new driver gene mutations. We observe increased inflammation and fibrosis and also provide evidence for significant pancreatic islet cell adaptation in obesity-associated tumors. Specifically, we identify aberrant islet beta cell expression of the peptide hormone cholecystokinin (CCK) in tumors as an adaptive response to obesity. Furthermore, beta cell CCK expression promotes oncogenic Kras -driven pancreatic ductal tumorigenesis. Our studies argue that PDAC progression is driven by local obesity-associated changes in the tumor microenvironment – rather than systemic effects – and implicate endocrine-exocrine signaling beyond insulin in PDAC development. Furthermore, our demonstration that these obesity-associated adaptations are reversible supports the use of anti-obesity strategies to intercept PDAC early during progression.