JH
James Hawley
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
427
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spatial genomic heterogeneity within localized, multifocal prostate cancer

Paul Boutros et al.May 25, 2015
Paul Boutros, Robert Bristow and colleagues report a molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer. They find that multifocal tumors are highly heterogeneous, and they identify a novel recurrent amplification of MYCL1. Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.
0
Citation425
0
Save
0

Integrated analyses highlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate cancer

Shuang Zhao et al.Jul 17, 2024
The impact of variations in the three-dimensional structure of the genome has been recognized, but solid cancer tissue studies are limited. Here, we performed integrated deep Hi-C sequencing with matched whole-genome sequencing, whole-genome bisulfite sequencing, 5-hydroxymethylcytosine (5hmC) sequencing and RNA sequencing across a cohort of 80 biopsy samples from patients with metastatic castration-resistant prostate cancer. Dramatic differences were present in gene expression, 5-methylcytosine/5hmC methylation and in structural variation versus mutation rate between A and B (open and closed) chromatin compartments. A subset of tumors exhibited depleted regional chromatin contacts at the AR locus, linked to extrachromosomal circular DNA (ecDNA) and worse response to AR signaling inhibitors. We also identified topological subtypes associated with stark differences in methylation structure, gene expression and prognosis. Our data suggested that DNA interactions may predispose to structural variant formation, exemplified by the recurrent TMPRSS2-ERG fusion. This comprehensive integrated sequencing effort represents a unique clinical tumor resource.
0
Citation2
0
Save
1

Non-coding mutations reveal cancer driver cistromes in luminal breast cancer

Samah Ghamrasni et al.May 31, 2021
Abstract Whole genome sequencing of primary breast tumors enabled the identification of cancer driver genes 1,2 and non-coding cancer driver plexuses from somatic mutations 3–6 . However, differentiating driver and passenger events among non-coding genetic variants remains a challenge to understand the etiology of cancer and inform delivery of personalized cancer medicine. Herein, we reveal an enrichment of non-coding mutations in cis-regulatory elements that cover a subset of transcription factors linked to tumor progression in luminal breast cancers. Using a cohort of 26 primary luminal ER+PR+ breast tumors, we compiled a catalogue of ∼100,000 unique cis-regulatory elements from ATAC-seq data. Integrating this catalogue with somatic mutations from 350 publicly available breast tumor whole genomes, we identified four recurrently mutated individual cis-regulatory elements. By then partitioning the non-coding genome into cistromes, defined as the sum of binding sites for a transcription factor, we uncovered cancer driver cistromes for ten transcription factors in luminal breast cancer, namely CTCF, ELF1, ESR1, FOSL2, FOXA1, FOXM1 GATA3, JUND, TFAP2A, and TFAP2C in luminal breast cancer. Nine of these ten transcription factors were shown to be essential for growth in breast cancer, with four exclusive to the luminal subtype. Collectively, we present a strategy to find cancer driver cistromes relying on quantifying the enrichment of non-coding mutations over cis-regulatory elements concatenated into a functional unit drawn from an accessible chromatin catalogue derived from primary cancer tissues.