Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens. The crystal structure of an influenza antibody that recognizes a small, conserved site in the variable receptor-binding domain of HA is described; this antibody shows broad neutralization across multiple subtypes of influenza A virus through an antibody–antigen interaction dominated by a single heavy-chain complementarity-determining region 3 loop. This manuscript reports the identification and structural characterization of a novel anti-influenza antibody, C05, that recognizes a small conserved site in the variable receptor-binding domain of haemagglutinin. The antibody achieves broad neutralization by the insertion of a single loop of the heavy-chain complementarity-determining region 3 into the small conserved site amplified by the avidity of additional binding interactions. This finding highlights loop insertion into the receptor-binding pocket of haemagglutinin as a possible strategy to achieve broad neutralization of influenza by vaccines and therapeutic antibodies.