AM
Ana Morao
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
55
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

An engineered, orthogonal auxin analog/AtTIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system in Caenorhabditis elegans

Kelly Hills-Muckey et al.Oct 12, 2021
Abstract The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.
1
Citation43
0
Save
41

Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans

Jun Kim et al.Mar 24, 2021
Abstract Condensins are molecular motors that compact DNA via linear translocation. In C. elegans , the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of r ecruit e lements on the X -chromosome ( rex ) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a “super rex” composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.
41
Citation5
0
Save
33

Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans

Ana Morao et al.Nov 30, 2021
Summary Condensin complexes are evolutionarily conserved molecular motors that translocate along DNA and form loops. While condensin-mediated DNA looping is thought to direct the chain-passing activity of topoisomerase II to separate sister chromatids, it is not known if topological constraints in turn regulate loop formation in vivo . Here we applied auxin inducible degradation of topoisomerases I and II to determine how DNA topology affects the translocation of an X chromosome specific condensin that represses transcription for dosage compensation in C. elegans (condensin DC). We found that both topoisomerases colocalize with condensin DC and control its movement at different genomic scales. TOP-2 depletion hindered condensin DC translocation over long distances, resulting in accumulation around its X-specific recruitment sites and shorter Hi-C interactions. In contrast, TOP-1 depletion did not affect long-range spreading but resulted in accumulation of condensin DC within expressed gene bodies. Both TOP-1 and TOP-2 depletions resulted in X chromosome transcriptional upregulation indicating that condensin DC translocation at both scales is required for its function in gene repression. Together the distinct effects of TOP-1 and TOP-2 on condensin DC distribution revealed two distinct modes of condensin DC association with chromatin: long-range translocation that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.
33
Citation3
0
Save
18

An engineered, orthogonal auxin analog/AtTIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system inCaenorhabditis elegans

Kelly Hills-Muckey et al.Aug 6, 2021
ABSTRACT The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 ( At TIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of At TIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex (SKR-1/2-CUL-1-F-box (SCF)), targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by At TIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin-derivative/mutant At TIR1 pair ( C. elegans AID version 2 ( C.e. AIDv2)) that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant At TIR1(F79G) allele that alters the ligand binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID targets, addition of 5-Ph-IAA to culture media of animals expressing At TIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the At TIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant At TIR1(F79G) allele expands the utility of the AID system and broadens the number of proteins that can be effectively targeted with it. ARITCLE SUMMARY Implementation of the auxin induced degradation (AID) system has increased the power if the C. elegans model through its ability to rapidly degrade target proteins in the presence of the plant hormone auxin (IAA). The current C.e .AID system is limited in that a substantial level of target degradation occurs in the absence of ligand and full levels of target protein degradation require high levels of auxin inducer. In this manuscript, we modify the AID system to solve these problems.
18
Citation3
0
Save
0

Binding of an X-specific condensin correlates with a reduction in active histone modifications at gene regulatory elements

Lena Street et al.Jan 9, 2019
ABSTRACT Condensins are evolutionarily conserved protein complexes that are required for chromosome segregation during cell division and genome organization during interphase. In C. elegans ,, a specialized condensin, which forms the core of the dosage compensation complex (DCC), binds to and represses X chromosome transcription. Here, we analyzed DCC localization and the effect of DCC depletion on histone modifications, transcription factor binding, and gene expression using ChIP-seq and mRNA-seq. Across the X, DCC accumulates at accessible gene regulatory sites in active chromatin and not heterochromatin. DCC is required for reducing the levels of activating histone modifications, including H3K4me3 and H3K27ac, but not repressive modification H3K9me3. In X-to-autosome fusion chromosomes, DCC spreading into the autosomal sequences locally reduces gene expression, thus establishing a direct link between DCC binding and repression. Together, our results indicate that DCC-mediated transcription repression is associated with a reduction in the activity of X chromosomal gene regulatory elements. SUMMARY Condensins are evolutionarily conserved protein complexes that mediate chromosome condensation during cell division and have been implicated in gene regulation during interphase. Here, we analyzed the gene regulatory role of an X-specific condensin (DCC) in C. elegans , by measuring its effect on histone modifications associated with transcription regulation. We found that in X-to-autosome fusion chromosomes, DCC spreading into autosomal sequences locally reduces gene expression, establishing a direct link between DCC binding and repression. DCC is required for reduced levels of histone modifications associated with transcription activation at X chromosomal promoters and enhancers. These results are consistent with a model whereby DCC binding directly or indirectly results in a reduction in the activity of X chromosomal gene regulatory elements through specific activating histone modifications.
0
Citation1
0
Save