Abstract A lymphocyte suffers many threats to its genome, including programmed mutation during differentiation, antigen-driven proliferation and residency in diverse microenvironments. After developing protocols for single-cell lymphocyte expansions, we sequenced whole genomes from 717 normal naive and memory B and T lymphocytes and hematopoietic stem cells. Lymphocytes carried more point mutations and structural variation than stem cells, accruing at higher rates in T than B cells, attributable to both exogenous and endogenous mutational processes. Ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every one on-target IGV mutation during the germinal center reaction. Structural variation was 16-fold higher in lymphocytes than stem cells, with ~15% of deletions being attributable to off-target RAG activity. One Sentence Summary: The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.