EM
Emma Miller
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
28
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Nuclear-cytoplasmic balance: whole genome duplications induce elevated organellar genome copy number

Matheus Gyorfy et al.Jun 9, 2021
Summary The plant genome is partitioned across three distinct subcellular compartments: the nucleus, mitochondria, and plastids. Successful coordination of gene expression among these organellar genomes and the nuclear genome is critical for plant function and fitness. Whole genome duplication events (WGDs) in the nucleus have played a major role in the diversification of land plants and are expected to perturb the relative copy number (stoichiometry) of nuclear, mitochondrial, and plastid genomes. Thus, elucidating the mechanisms whereby plant cells respond to the cytonuclear stoichiometric imbalance that follow WGDs represents an important yet underexplored question in understanding the evolutionary consequences of genome doubling. We used droplet digital PCR (ddPCR) to investigate the relationship between nuclear and organellar genome copy numbers in allopolyploids and their diploid progenitors in both wheat and Arabidopsis . Polyploids exhibit elevated organellar genome copy numbers per cell, largely preserving the cytonuclear stoichiometry observed in diploids despite the change in nuclear genome copy number. To investigate the timescale over which cytonuclear stoichiometry may respond to WGD, we also estimated organellar genome copy number in Arabidopsis synthetic autopolyploids and in a haploid-induced diploid line. We observed corresponding changes in organellar genome copy number in these laboratory-generated lines, indicating that at least some of the cellular response to cytonuclear stoichiometric imbalance is immediate following WGD. We conclude that increases in organellar genome copy numbers represent a common response to polyploidization, suggesting that maintenance of cytonuclear stoichiometry is an important component in establishing polyploid lineages. Significance Statement Whole genome duplications (WGD) have the potential to alter the stoichiometric balance between nuclear and organellar genomes. We used two separate diploid-polyploid complexes to show that plant cells with WGD exhibit elevated mitochondrial and plastid genome copy numbers, both immediately in lab-generated lines and in natural polyploids.
16
Citation7
0
Save
62

Organellar transcripts dominate the cellular mRNA pool across plants of varying ploidy levels

Evan Forsythe et al.Mar 14, 2022
ABSTRACT Mitochondrial and plastid functions depend on coordinated expression of proteins encoded by genomic compartments that have radical differences in copy number of organellar and nuclear genomes. In polyploids, doubling of the nuclear genome may add challenges to maintaining balanced expression of proteins involved in cytonuclear interactions. Here, we use ribo-depleted RNA-seq to analyze transcript abundance for nuclear and organellar genomes in leaf tissue from four different polyploid angiosperms and their close diploid relatives. We find that, even though plastid genomes contain <1% of the number of genes in the nuclear genome, they generate the majority (69.9–82.3%) of mRNA transcripts in the cell. Mitochondrial genes are responsible for a much smaller percentage (1.3–3.7%) of the leaf mRNA pool but still produce much higher transcript abundances per gene compared to nuclear genome. Nuclear genes encoding proteins that functionally interact with mitochondrial or plastid gene products exhibit mRNA expression levels that are consistently more than ten-fold lower than their organellar counterparts, indicating an extreme cytonuclear imbalance at the RNA level despite the predominance of equimolar interactions at the protein level. Nevertheless, interacting nuclear and organellar genes show strongly correlated transcript abundances across functional categories, suggesting that the observed mRNA stoichiometric imbalance does not preclude coordination of cytonuclear expression. Finally, we show that nuclear genome doubling does not alter the cytonuclear expression ratios observed in diploid relatives in consistent or systematic ways, indicating that successful polyploid plants are able to compensate for cytonuclear perturbations associated with nuclear genome doubling.
62
Citation5
0
Save
58

Global patterns of subgenome evolution in organelle-targeted genes of six allotetraploid angiosperms

Joel Sharbrough et al.Jul 9, 2021
ABSTRACT Whole-genome duplications (WGDs), in which the number of nuclear genome copies is elevated as a result of autopolyploidy or allopolyploidy, are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes upon cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend upon successful interaction between the 3000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between nuclear and cytoplasmic genes that were inherited from different species. Because cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary “mismatches” between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We tested this hypothesis in maternal vs. paternal copies of organelle-targeted genes in six allotetraploids: Brachypodium hybridum , Chenopodium quinoa , Coffea arabica , Gossypium hirsutum , Nicotiana tabacum , and Triticum dicoccoides . We report evidence that allopolyploid subgenomes exhibit unequal rates of protein-sequence evolution, but we did not observe global effects of cytonuclear incompatibilities on paternal homoeologs of organelle-targeted genes. Analyses of gene content revealed mixed evidence for whether organelle-targeted genes re-diploidize more rapidly than non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context. AUTHOR SUMMARY Whole genome duplication, in which the size and content of the nuclear genome is instantly doubled, represents one of the most profound forms of mutational change. The consequences of duplication events are equally monumental, especially considering that almost all eukaryotes have undergone whole genome duplications during their evolutionary history. While myriad genetic, cellular, organismal, and ecological effects of whole genome duplications have been extensively documented, relatively little attention has been paid to the diminutive but essential “other” genomes present inside the cell, those of chloroplasts and mitochondria. In this study, we compared the evolutionary patterns of >340,000 genes from 23 species to test whether whole genome duplications are associated with genetic mismatches between the nuclear, mitochondrial, and chloroplast genomes. We discovered tremendous differences between duplicated copies of nuclear genomes; however, mitochondria-nuclear and chloroplast-nuclear mismatches do not appear to be common following whole genome duplications. Together these genomic data represent the most extensive analysis yet performed on how polyploids maintain the delicate and finely tuned balance between the nuclear, mitochondrial, and chloroplast genomes.
58
Citation4
0
Save
8

Dual domestication, diversity, and differential introgression in Old World cotton diploids

Corrinne Grover et al.Oct 21, 2021
Abstract Domestication in the cotton genus is remarkable in that it has occurred independently four different times at two different ploidy levels. Relatively little is known about genome evolution and domestication in the cultivated diploid species Gossypium herbaceum and G. arboreum , because of the absence of wild representatives for the latter species, their ancient domestication, and their joint history of human-mediated dispersal and interspecific gene flow. Using in-depth resequencing of a broad sampling from both species, we confirm their independent domestication, as opposed to a progenitor-derivative relationship, showing that diversity (mean π = 2.3×10 -3 ) within species is similar, and that divergence between species is modest (weighted F ST =0.4430). Individual accessions were homozygous for ancestral SNPs at over half of variable sites, while fixed, derived sites were at modest frequencies. Notably, two chromosomes with a paucity of fixed, derived sites ( i.e ., chromosomes 7 and 10) were also strongly implicated in introgression analyses. Collectively, these data demonstrate variable permeability to introgression among chromosomes, which we propose is due to divergent selection under domestication and/or the phenomenon of F 2 breakdown in interspecific crosses. Our analyses provide insight into the evolutionary forces influencing diversity and divergence in the diploid cultivated species, and establish a foundation for understanding the contribution of introgression and/or strong parallel selection to the extensive morphological similarities shared between species. Significance statement The cotton genus ( Gossypium ) contains four different species that were independently domesticated at least 4,000 years ago. Relatively little is understood about diversity and evolution in the two diploid African-Asian sister-species G. herbaceum and G. arboreum , despite their historical importance in the region and contemporary cultivation, largely in the Indian subcontinent. Here we address questions regarding the relationship between the two species, their contemporary levels of diversity, and their patterns of interspecific gene flow accompanying their several millennia history of human-mediated dispersal and contact. We validate independent domestication of the two species and document the genomic distribution of interspecific genetic exchange.
8
Citation4
0
Save
7

A high-quality chromosome-level genome assembly of rohu carp, Labeo rohita, and its utilization in SNP-based exploration of gene flow and sex determination

Mark Arick et al.Sep 12, 2022
Abstract Labeo rohita (rohu) is a carp important to aquaculture in South Asia, with a production volume close to Atlantic salmon. While genetic improvements to rohu are ongoing, the genomic methods commonly used in other aquaculture improvement programs have historically been precluded in rohu, partially due to the lack of a high quality reference genome. Here we present a high-quality de novo genome produced using a combination of next-generation sequencing technologies, resulting in a 946 Mb genome consisting of 25 chromosomes and 2,844 unplaced scaffolds. Notably, while approximately half the size of the existing genome sequence, our genome represents 97.9% of the genome size newly estimated here using flow cytometry. Sequencing from 120 individuals was used in conjunction with this genome to predict the population structure, diversity, and divergence in three major rivers (Jamuna, Padma, and Halda), in addition to infer a likely sex determination mechanism in rohu. These results demonstrate the utility of the new rohu genome in modernizing some aspects of rohu genetic improvement programs.
7
Citation2
0
Save
1

A high-quality chromosome-level genome assembly of rohu carp,Labeo rohita, and its utilization in SNP-based exploration of gene flow and sex determination

Mark Arick et al.Jan 14, 2023
Labeo rohita (rohu) is a carp important to aquaculture in South Asia, with a production volume close to Atlantic salmon. While genetic improvements to rohu are ongoing, the genomic methods commonly used in other aquaculture improvement programs have historically been precluded in rohu, partially due to the lack of a high-quality reference genome. Here we present a high-quality de novo genome produced using a combination of next-generation sequencing technologies, resulting in a 946 Mb genome consisting of 25 chromosomes and 2,844 unplaced scaffolds. Notably, while approximately half the size of the existing genome sequence, our genome represents 97.9% of the genome size newly estimated here using flow cytometry. Sequencing from 120 individuals was used in conjunction with this genome to predict the population structure, diversity, and divergence in three major rivers (Jamuna, Padma, and Halda), in addition to infer a likely sex determination mechism in rohu. These results demonstrate the utility of the new rohu genome in modernizing some aspects of rohu genetic improvement programs.
1
Citation2
0
Save
3

Variation in cytonuclear expression accommodation among allopolyploid plants

Corrinne Grover et al.Mar 12, 2022
Abstract Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict ( i.e., cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for six allopolyploid lineages that represent four genera ( i.e., Arabidopsis, Arachis, Chenopodium , and Gossypium ) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression level dominance in cytonuclear genes relative to the background of non-cytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression accommodation may be a subtle and/or variable phenomenon that does not capture the full range of mechanisms by which allopolyploid plants resolve nuclear-cytoplasmic incompatibilities.
3
Citation2
0
Save
0

A high-resolution model of gene expression duringGossypium hirsutum(cotton) fiber development

Corrinne Grover et al.Jul 22, 2024
Abstract Cotton fiber development relies on complex and intricate biological processes to transform newly differentiated fiber initials into the mature, extravagantly elongated cellulosic cells that are the foundation of this economically important cash crop. Here we extend previous research into cotton fiber development by employing controlled conditions to minimize variability and utilizing time-series sampling and analyses to capture daily transcriptomic changes from early elongation through the early stages of secondary wall synthesis (6 to 24 days post anthesis; DPA). A majority of genes are expressed in fiber, largely partitioned into two major coexpression modules that represent genes whose expression generally increases or decreases during development. Differential gene expression reveals a massive transcriptomic shift between 16 and 17 DPA, corresponding to the onset of the transition phase that leads to secondary wall synthesis. Subtle gene expression changes are captured by the daily sampling, which are discussed in the context of fiber development. Coexpression and gene regulatory networks are constructed and associated with phenotypic aspects of fiber development, including turgor and cellulose production. Key genes are considered in the broader context of plant secondary wall synthesis, noting their known and putative roles in cotton fiber development. The analyses presented here highlight the importance of fine-scale temporal sampling on understanding developmental processes and offer insight into genes and regulatory networks that may be important in conferring the unique fiber phenotype.