MA
Maria Aristova
Author with expertise in Advanced Cardiac Imaging Techniques and Diagnostics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
5
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Cerebrovascular super-resolution 4D Flow MRI – using deep learning to non-invasively quantify velocity, flow, and relative pressure

Edward Ferdian et al.Aug 27, 2021
ABSTRACT The development of cerebrovascular disease is tightly coupled to changes in cerebrovascular hemodynamics, with altered flow and relative pressure indicative of the onset, development, and acute manifestation of pathology. Image-based monitoring of cerebrovascular hemodynamics is, however, complicated by the narrow and tortuous vasculature, where accurate output directly depends on sufficient spatial resolution. To address this, we present a method combining dedicated deep learning and state-of-the-art 4D Flow MRI to generate super-resolution full-field images with coupled quantification of relative pressure using a physics-driven image processing approach. The method is trained and validated in a patient-specific in-silico cohort, showing good accuracy in estimating velocity (relative error: 12.0 ± 0.1%, mean absolute error (MAE): 0.07 ± 0.06 m/s at peak velocity), flow (relative error: 6.6 ± 4.7%, root mean square error (RMSE): 0.5 ± 0.1 mL/s at peak flow), and with maintained recovery of relative pressure through the circle of Willis (relative error: 11.0 ± 7.3%, RMSE: 0.3 ± 0.2 mmHg). Furthermore, the method is applied to an in-vivo volunteer cohort, effectively generating data at <0.5mm resolution and showing potential in reducing low-resolution bias in relative pressure estimation. Our approach presents a promising method to non-invasively quantify cerebrovascular hemodynamics, applicable to dedicated clinical cohorts in the future.
0

Generalized super-resolution 4D Flow MRI - using ensemble learning to extend across the cardiovascular system

L. ERICSSON et al.Jan 1, 2024
4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was therefore to explore the generalizability of SR 4D Flow MRI using a combination of existing super-resolution base models, novel heterogeneous training sets, and dedicated ensemble learning techniques; the latter-most being effectively used for improved domain adaption in other domains or modalities, however, with no previous exploration in the setting of 4D Flow MRI. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with the novel use of ensemble learning in the setting of advanced fullfield flow imaging extending utility across various clinical areas of interest.
0

Automated intracranial vessel segmentation of 4D flow MRI data in patients with atherosclerotic stenosis using a convolutional neural network

Patrick Winter et al.Jun 4, 2024
Introduction Intracranial 4D flow MRI enables quantitative assessment of hemodynamics in patients with intracranial atherosclerotic disease (ICAD). However, quantitative assessments are still challenging due to the time-consuming vessel segmentation, especially in the presence of stenoses, which can often result in user variability. To improve the reproducibility and robustness as well as to accelerate data analysis, we developed an accurate, fully automated segmentation for stenosed intracranial vessels using deep learning. Methods 154 dual-VENC 4D flow MRI scans (68 ICAD patients with stenosis, 86 healthy controls) were retrospectively selected. Manual segmentations were used as ground truth for training. For automated segmentation, deep learning was performed using a 3D U-Net. 20 randomly selected cases (10 controls, 10 patients) were separated and solely used for testing. Cross-sectional areas and flow parameters were determined in the Circle of Willis (CoW) and the sinuses. Furthermore, the flow conservation error was calculated. For statistical comparisons, Dice scores (DS), Hausdorff distance (HD), average symmetrical surface distance (ASSD), Bland-Altman analyses, and interclass correlations were computed using the manual segmentations from two independent observers as reference. Finally, three stenosis cases were analyzed in more detail by comparing the 4D flow-based segmentations with segmentations from black blood vessel wall imaging (VWI). Results Training of the network took approximately 10 h and the average automated segmentation time was 2.2 ± 1.0 s. No significant differences in segmentation performance relative to two independent observers were observed. For the controls, mean DS was 0.85 ± 0.03 for the CoW and 0.86 ± 0.06 for the sinuses. Mean HD was 7.2 ± 1.5 mm (CoW) and 6.6 ± 3.7 mm (sinuses). Mean ASSD was 0.15 ± 0.04 mm (CoW) and 0.22 ± 0.17 mm (sinuses). For the patients, the mean DS was 0.85 ± 0.04 (CoW) and 0.82 ± 0.07 (sinuses), the HD was 8.4 ± 3.1 mm (CoW) and 5.7 ± 1.9 mm (sinuses) and the mean ASSD was 0.22 ± 0.10 mm (CoW) and 0.22 ± 0.11 mm (sinuses). Small bias and limits of agreement were observed in both cohorts for the flow parameters. The assessment of the cross-sectional lumen areas in stenosed vessels revealed very good agreement (ICC: 0.93) with the VWI segmentation but a consistent overestimation (bias ± LOA: 28.1 ± 13.9%). Discussion Deep learning was successfully applied for fully automated segmentation of stenosed intracranial vasculatures using 4D flow MRI data. The statistical analysis of segmentation and flow metrics demonstrated very good agreement between the CNN and manual segmentation and good performance in stenosed vessels. To further improve the performance and generalization, more ICAD segmentations as well as other intracranial vascular pathologies will be considered in the future.