PC
Priscilla Cheung
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
252
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Stiffness Regulates Intestinal Stem Cell Fate

Shijie He et al.Mar 16, 2021
Summary Does fibrotic gut stiffening caused by inflammatory bowel diseases (IBD) direct the fate of intestinal stem cells (ISCs)? To address this question we first developed a novel long-term culture of quasi-3D gut organoids plated on hydrogel matrix of varying stiffness. Stiffening from 0.6kPa to 9.6kPa significantly reduces Lgr5 high ISCs and Ki67 + progenitor cells while promoting their differentiation towards goblet cells. These stiffness-driven events are attributable to YAP nuclear translocation. Matrix stiffening also extends the expression of the stemness marker Olfactomedin 4 (Olfm4) into villus-like regions, mediated by cytoplasmic YAP. We next used single-cell RNA sequencing to generate for the first time the stiffness-regulated transcriptional signatures of ISCs and their differentiated counterparts. These signatures confirm the impact of stiffening on ISC fate and additionally suggest a stiffening-induced switch in metabolic phenotype, from oxidative phosphorylation to glycolysis. Finally, we used colon samples from IBD patients as well as chronic colitis murine models to confirm the in vivo stiffening-induced epithelial deterioration similar to that observed in vitro . Together, these results demonstrate stiffness-dependent ISC reprograming wherein YAP nuclear translocation diminishes ISCs and Ki67 + progenitors and drives their differentiation towards goblet cells, suggesting stiffening as potential target to mitigate gut epithelial deterioration during IBD.
5
Citation5
0
Save
1

Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53

Jonathan Lee et al.Sep 1, 2023
COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
1
Citation1
0
Save
0

An engineered CRISPR/Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells

Sarah Bowling et al.Oct 17, 2019
Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Particularly in the context of stem cell biology, analysis of single cell lineages in their native state has elucidated novel fates and highlighted heterogeneity of function. Coupling of such ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CARLIN (for CRISPR Array Repair LINeage tracing) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo . This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures based on in vivo stem cell function without a need for markers or cell sorting.