QW
Qiuting Wen
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
9
(33% Open Access)
Cited by:
6
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Denoising diffusion weighted imaging data using convolutional neural networks

Hu Cheng et al.Jan 20, 2022
Abstract Diffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue microstructure measurements; however, high b-value DWI images contain high noise levels that can overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple denoising method that can be applied to any dataset, provided a low-noise, single-subject dataset is acquired using the same DWI sequence. The denoising method uses a one-dimensional convolutional neural network (1D-CNN) and deep learning to learn from a low-noise dataset, voxel-by-voxel. The trained model can then be applied to high-noise datasets from other subjects. We validated the 1D-CNN denoising method by first demonstrating that 1D-CNN denoising resulted in DWI images that were more similar to the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simulated DWI data. Using the same DWI acquisition but reconstructed with two common reconstruction methods, i.e. SENSE1 and sum-of-square, to generate a pair of low-noise and high-noise datasets, we then demonstrated that 1D-CNN denoising of high-noise DWI data collected from human subjects showed promising results in three domains: DWI images, diffusion metrics, and tractography. In particular, the denoised images were very similar to a low-noise reference image of that subject, more than the similarity between repeated low-noise images (i.e. computational reproducibility). Finally, we demonstrated the use of the 1D-CNN method in two practical examples to reduce noise from parallel imaging and simultaneous multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple, effective denoising method for DWI images that overcomes some of the limitations of current state-of-the-art denoising methods, such as the need for a large number of subjects for training and accounting for the rectified noise floor.
1

Robust data-driven segmentation of pulsatile cerebral vessels using functional magnetic resonance imaging

Adam Wright et al.Jul 22, 2024
Functional magnetic resonance imaging (fMRI) captures rich physiological and neuronal information that can offer insights into neurofluid dynamics, vascular health, and waste clearance function. The availability of cerebral vessel segmentation could facilitate fluid dynamics research in fMRI. However, without magnetic resonance angiography scans, cerebral vessel segmentation is challenging and time-consuming. This study leverages cardiac-induced pulsatile fMRI signal to develop a data-driven, automatic segmentation of large cerebral arteries and the superior sagittal sinus (SSS). The method was validated in a local dataset by comparing it to ground truth cerebral artery and SSS segmentations. Using the Human Connectome Project (HCP) aging dataset, the method's reproducibility was tested on 422 participants aged 36 to 100 years, each with four repeated fMRI scans. The method demonstrated high reproducibility, with an intraclass correlation coefficient > 0.7 in both cerebral artery and SSS segmentation volumes. This study demonstrates that the large cerebral arteries and SSS can be reproducibly and automatically segmented in fMRI datasets, facilitating the investigation of fluid dynamics in these regions.
0

Robust data-driven segmentation of pulsatile cerebral vessels using functional magnetic resonance imaging

Adam Wright et al.Dec 6, 2024
Functional magnetic resonance imaging (fMRI) captures rich physiological and neuronal information, offering insight into neurofluid dynamics, vascular health and waste clearance. Accurate cerebral vessel segmentation could greatly facilitate fluid dynamics research in fMRI. However, existing vessel identification methods, such as magnetic resonance angiography or deep-learning-based segmentation on structural MRI, cannot reliably locate cerebral vessels in fMRI space due to misregistration from inherent fMRI distortions. To address this challenge, we developed a data-driven, automatic segmentation of cerebral vessels directly within fMRI space. This approach identified large cerebral arteries and the superior sagittal sinus (SSS) by leveraging these vessels' distinct pulsatile signal patterns during the cardiac cycle. The method was validated in a local dataset by comparing it to ground truth cerebral artery and SSS segmentations. Using the Human Connectome Project (HCP) ageing dataset, the method's reproducibility was tested on 422 participants aged 36-90, each with four repeated fMRI scans. The method demonstrated high reproducibility, with an intraclass correlation coefficient > 0.7 in both cerebral artery and SSS segmentation volumes. This study demonstrates that large cerebral arteries and SSS can be reproducibly and automatically segmented in fMRI datasets, facilitating reliable fluid dynamics investigation in these regions.
0

Using respiratory challenges to modulate CSF movement across different physiological pathways: An fMRI study

Vidhya Nair et al.Jan 1, 2024
Abstract With growing evidence signifying the impact of cerebrospinal fluid (CSF) flow in facilitating waste clearance from the brain and potential pathophysiological links to neurodegenerative disorders, it is of vital importance to develop effective methods to modulate CSF flow in the brain. Here, we attempt this by means of simple commonly used respiratory challenges—paced breathing and breath holding. Functional Magnetic Resonance Imaging scans of the brain and neck respectively were used to record the craniad and caudad CSF movements at the fourth ventricle from eight healthy volunteers during paced breathing and breath holding. Further, we utilized a novel approach for the first time to combine these separately acquired unidirectional CSF movement signals to compare the CSF flow in both directions (in the fourth ventricle) with the respiratory stimuli as a physiological control. Our results demonstrate that these respiratory challenges enhance the magnitude as well as control the direction of CSF movement in the fourth ventricle. They also reveal the capability of blood CO2 concentration changes (induced by respiratory challenges) in the low-frequency range to bring about these CSF movement modulations. Finally, we also successfully report our novel approach where we use these breathing challenges as a unique control condition to detect the small net CSF flows from independently captured unidirectional signals.
0
Citation1
0
Save
0

Exploring radial asymmetry in MR diffusion tensor imaging and its impact on the interpretation of glymphatic mechanisms

Adam Wright et al.Nov 26, 2024
Motivation: Researchers have used diffusion tensor imaging along the perivascular space (DTI-ALPS) to investigate glymphatic function, but the influence of white matter properties on the ALPS-index remains unstudied. Goal(s): Establish whether a reduction in the ALPS-index could be influenced by axonal changes. Approach: A key assumption underlying the ALPS-index is that axons demonstrate symmetric radial diffusivities, such that eigenvalue-2 and eigenvalue-3 are equal (&lambda;2=&lambda;3). We investigated this assumption and evaluated &lambda;2/&lambda;3 changes in white matter tracts. Results: Contrary to the DTI-ALPS assumption, widespread radial asymmetry (&lambda;2/&lambda;3&asymp;1.5) was observed within all white matter tracts, the extent of which decreased with aging and neurodegeneration. Impact: This study unveils widespread radial asymmetry of white matter tracts &mdash; a phenomenon that has been overlooked in DTI studies. The results provide evidence of axonal contributions to the ALPS-index, prompting researchers to consider axonal influences when interpreting this metric.