HY
Hongbin Yang
Author with expertise in Computational Methods in Drug Discovery
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
46
h-index:
45
/
i10-index:
184
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection

Srijit Seal et al.Aug 23, 2022
Abstract Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy and applicability domain to the chemical space of the training compounds. In this work, we aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We combined Cell Painting and Gene Expression data with chemical structural information from Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial membrane depolarization assay. We observed that mitochondrial toxicants differ from non-toxic compounds in morphological space and identified compound clusters having similar mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides biological insights related to mechanisms of action of this endpoint. We further showed that models combining Cell Painting, Gene Expression features and Morgan fingerprints improved model performance on an external test set of 244 compounds by 60% (in terms of F1 score) and improved extrapolation to new chemical space. The performance of our combined models was comparable with dedicated in vitro assays for mitochondrial toxicity. Our results suggest that combining chemical descriptors with biological readouts enhances the detection of mitochondrial toxicants, with practical implications in drug discovery.
1
Citation38
0
Save
19

Integrating Cell Morphology with Gene Expression and Chemical Structure to Aid Mitochondrial Toxicity Detection

Srijit Seal et al.Jan 7, 2022
ABSTRACT Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy and applicability domain to the chemical space of the training compounds. In this work, we aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We combined Cell Painting and Gene Expression data with chemical structural information from Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial membrane depolarization assay. We observed that mitochondrial toxicants differ from non-toxic compounds in morphological space and identified compound clusters having similar mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides biological insights related to mechanisms of action of this endpoint. We further showed that models combining Cell Painting, Gene Expression features and Morgan fingerprints improved model performance on an external test set of 244 compounds by 60% (in terms of F1 score) and improved extrapolation to new chemical space. The performance of our combined models was comparable with dedicated in vitro assays for mitochondrial toxicity. Our results suggest that combining chemical descriptors with biological readouts enhances the detection of mitochondrial toxicants, with practical implications in drug discovery. Abstract Figure Graphical Abstract
19
Citation3
0
Save
1

Merging Bioactivity Predictions from Cell Morphology and Chemical Fingerprint Models Using Similarity to Training Data

Srijit Seal et al.Aug 15, 2022
ABSTRACT The applicability domain of machine learning models trained on structural fingerprints for the prediction of biological endpoints is often limited by the lack of diversity of chemical space of the training data. In this work, we developed similarity-based merger models which combined the outputs of individual models trained on cell morphology (based on Cell Painting) and chemical structure (based on chemical fingerprints) and the structural and morphological similarities of the compounds in the test dataset to compounds in the training dataset. We applied these similarity-based merger models using logistic regression models on the predictions and similarities as features and predicted assay hit calls of 177 assays from ChEMBL, PubChem and the Broad Institute (where the required Cell Painting annotations were available). We found that the similarity-based merger models outperformed other models with an additional 20% assays (79 out of 177 assays) with an AUC>0.70 compared with 65 out of 177 assays using structural models and 50 out of 177 assays using Cell Painting models. Our results demonstrated that similarity-based merger models combining structure and cell morphology models can more accurately predict a wide range of biological assay outcomes and further expanded the applicability domain by better extrapolating to new structural and morphology spaces. Abstract Figure Figure: For TOC Only
1
Citation3
0
Save
4

Network-based modeling of herb combinations in Traditional Chinese Medicine

Yinyin Wang et al.Jan 24, 2021
Abstract Traditional Chinese Medicine (TCM) has been practiced for thousands of years for treating human diseases. In comparison to modern medicine, one of the advantages of TCM is the principle of herb compatibility, known as TCM formulae. A TCM formula usually consists of multiple herbs to achieve the maximum treatment effects, where their interactions are believed to elicit the therapeutic effects. Despite being a fundamental component of TCM, the rationale of combining specific herb combinations remains unclear. In this study, we proposed a network-based method to quantify the interactions in herb pairs. We constructed a protein-protein interaction network for a given herb pair by retrieving the associated ingredients and protein targets, and determined multiple network-based distances including the closest, shortest, center, kernel, and separation, both at the ingredient and at the target levels. We found that the frequently used herb pairs tend to have shorter distances compared to random herb pairs, suggesting that a therapeutic herb pair is more likely to affect neighboring proteins in the human interactome. Furthermore, we found that the center distance determined at the ingredient level improves the discrimination of top-frequent herb pairs from random herb pairs, suggesting the rationale of considering the topologically important ingredients for inferring the mechanisms of action of TCM. Taken together, we have provided a network pharmacology framework to quantify the degree of herb interactions, which shall help explore the space of herb combinations more effectively to identify the synergistic compound interactions based on network topology.
4
Citation1
0
Save