AB
Andreas Brandmaier
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
484
h-index:
28
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
17

Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s Disease

James Roe et al.Jun 20, 2020
Abstract Normal aging and Alzheimer’s Disease (AD) are accompanied by large-scale alterations in brain organization that undermine brain function. Although hemispheric asymmetry is a global organizing feature of cortex thought to promote brain efficiency, current descriptions of cortical thinning in aging and AD have largely overlooked cortical asymmetry. Consequently, the foundational question of whether and where the cerebral hemispheres change at different rates in aging and AD remains open. First, applying vertex-wise data-driven clustering in a longitudinal discovery sample (aged 20-89; 2577 observations; 1851 longitudinal) we identified cortical regions exhibiting similar age-trajectories of asymmetry across the adult lifespan. Next, we sought replication in 4 independent longitudinal aging cohorts. We show that higher-order regions of cortex that exhibit pronounced asymmetry at age ~20 also show asymmetry change in aging. Results revealed that both leftward and rightward asymmetry is progressively lost on a similar time-scale across adult life. Hence, faster thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This simple organizational principle showed high consistency across multiple aging cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Finally, we show that regions exhibiting gradual asymmetry-loss over healthy adult life exhibit faster asymmetry-change in AD. Overall, our results suggest a system-wide breakdown in the adaptive asymmetric organization of cortex across adult life which is further accelerated in AD, and may implicate thickness asymmetry as a viable marker for declining hemispheric specialization in aging and AD. Significance The brain becomes progressively disorganized with age, and brain alterations accelerated in Alzheimer’s disease may occur gradually over the lifespan. Although hemispheric asymmetry aids efficient network organization, efforts to identify structural markers of age-related decline have largely overlooked cortical asymmetry. Here we show the hemisphere that is thicker when younger, thins faster. This leads to progressive system-wide loss of regional thickness asymmetry across life. In multiple aging cohorts, asymmetry-loss showed high reproducibility topologically across cortex and similar timing-of-change in aging. Asymmetry-change was further accelerated in AD. Our findings uncover a new principle of brain aging – thicker homotopic cortex thins faster – and suggest we may have unveiled a structural marker for a widely-hypothesized decline in hemispheric specialization in aging and AD.
17
Citation5
0
Save
24

Reliability of quantitative multiparameter maps is high for MT and PD but attenuated for R1 and R2* in healthy young adults

Elisabeth Wenger et al.Nov 11, 2021
Abstract We investigate the reliability of individual differences of four quantities measured by magnetic resonance imaging based multiparameter mapping (MPM): magnetization transfer (MT), proton density (PD), longitudinal relaxation rate (R1), and effective transverse relaxation rate (R2*). A total of four MPM datasets, two on each of two consecutive days, were acquired in healthy young adults. On Day 1, no repositioning occurred; on Day 2, participants were repositioned between MPM datasets. Using intra-class correlation effect decomposition (ICED), we assessed the contributions of session-specific, day-specific, and residual sources of measurement error. For whole-brain gray and white matter, all four MPM parameters showed high reproducibility and high reliability, as indexed by the coefficient of variation (CoV) and the intra-class correlation (ICC). However, MT, PD, R1, and R2* differed markedly in the extent to which reliability varied across brain regions. MT and PD showed high reliability in almost all regions. In contrast, R1 and R2* showed low reliability in some regions outside the basal ganglia, such that the sum of the measurement error estimates in our structural equation model was higher than estimates of between-person differences. In sum, in this sample of healthy young adults, the four MPM parameters showed very little variability over four measurements over two days but differed in how well they could assess between-person differences. We conclude that R1 and R2* might carry only limited person-specific information in samples of healthy young adults, and, by implication, might be of restricted utility for studying associations to between-person differences in behavior.
191

Sleep duration and brain structure – phenotypic associations and genotypic covariance

Anders Fjell et al.Feb 17, 2022
Abstract The question of how much sleep is best for the brain attracts scientific and public interest, and there is concern that insuficient sleep leads to poorer brain health. However, it is unknown how much sleep is sufficient and how much is too much. We analyzed 51,295 brain magnetic resonnance images from 47,039 participants, and calculated the self-reported sleep duration associated with the largest regional volumes and smallest ventricles relative to intracranial volume (ICV) and thickest cortex. 6.8 hours of sleep was associated with the most favorable brain outcome overall. Critical values, defined by 95% confidence intervals, were 5.7 and 7.9 hours. There was regional variation, with for instance the hippocampus showing largest volume at 6.3 hours. Moderately long sleep (> 8 hours) was more strongly associated with smaller relative volumes, thinner cortex and larger ventricles than even very short sleep (< 5 hours), but effect sizes were modest. People with larger ICV reported longer sleep (7.5 hours), so not correcting for ICV yielded longer durations associated with maximal volume. Controlling for socioeconomic status, body mass index and depression symptoms did not alter the associations. Genetic analyses showed that genes related to longer sleep in short sleepers were related to shorter sleep in long sleepers. This may indicate a genetically controlled homeostatic regulation of sleep duration. Mendelian randomization analyses did not suggest sleep duration to have a causal impact on brain structure in the analyzed datasets. The findings challenge the notion that habitual short sleep is negatively related to brain structure. Significance statement According to consensus recommendations, adults should sleep between 7 and 9 hours to optimize their health. We found that sleeping less than the recommended amount was associated with greater regional brain volumes relative to intracranial volume, and very short sleep was only weakly related to smaller volumes. Genetic analyses did not show causal effects of sleep duration on brain structure. Taken together, the results suggest that habitual short sleep is not an important contributor to lower brain volumes in adults on a group level, and that large individual dfferences in sleep need likely exist.
191
Citation2
0
Save
0

Hippocampal subfields and limbic white matter jointly predict learning rate in older adults

Andrew Bender et al.Jun 6, 2019
Age-related memory impairments have been linked to differences in structural brain parameters, including cerebral white matter (WM) microstructure and hippocampal (HC) volume, but their combined influences are rarely investigated. In a population-based sample of 337 older participants 61–82 years of age (Mage=69.66, SDage=3.92 years) we modeled the independent and joint effects of limbic WM microstructure and HC subfield volumes on verbal learning. Participants completed a verbal learning task over five learning trials and underwent magnetic resonance imaging (MRI), including structural and diffusion scans. We segmented three HC subregions on high-resolution MRI data and sampled mean fractional anisotropy (FA) from bilateral limbic WM tracts identified via deterministic fiber tractography. Using structural equation modeling, we evaluated the associations between learning rate and latent factors representing FA sampled from limbic WM tracts, and HC subfield volumes, as well as their latent interaction. Results showed limbic WM and the interaction of HC and WM – but not HC volume alone – predicted verbal learning rates. Model decomposition revealed HC volume is only positively associated with learning rate in individuals with higher levels of WM anisotropy. We conclude that structural characteristics of limbic WM regions and HC volume jointly contribute to verbal learning in older adults.
7

Is short sleep bad for the brain? Brain structure and cognitive function in short sleepers

Anders Fjell et al.Dec 22, 2022
Abstract Many sleep less than recommended without experiencing daytime tiredness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this question using a combined cross-sectional and longitudinal sample of 47,029 participants (age 20-89 years) with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. 701 participants who reported to sleep < 6 hours did not experience daytime tiredness or sleep problems. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime tiredness and sleep problems (n = 1619) and participants sleeping the recommended 7-8 hours (n = 3754). However, both groups of short sleepers showed slightly lower general cognitive function, 0.16 and 0.19 standard deviations, respectively. Analyses using acelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income and education. The results suggest that some people can cope with less sleep without obvious negative consequences for brain morphometry, in line with a view on sleep need as individualized. Tiredness and sleep problems seem to be more relevant for brain structural differences than sleep duration per se. However, the slightly lower performance on tests of general cognitive function warrants closer examination by experimental designs in natural settings. Significance statement Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here we show that daytime tiredness and sleep problems are more important variables for regional brain volumes than sleep duration. However, participants sleeping < 6 hours had slightly lower scores on tests of general cognitive function. This indicates that sleep need is individual, and that sleep duration per se may be a less relevant variable for brain health than daytime tiredness and sleep problems. The association between habitual short sleep and lower scores on tests of general cogntitive function must be further scrutinized in natural settings.
0

Reliability of structural brain change in cognitively healthy adult samples.

Dídac Vidal-Piñeiro et al.Jun 3, 2024
Abstract In neuroimaging research, tracking individuals over time is key to understanding the interplay between brain changes and genetic, environmental, or cognitive factors across the lifespan. Yet, the extent to which we can estimate the individual trajectories of brain change over time with precision remains uncertain. In this study, we estimated the reliability of structural brain change in cognitively healthy adults from multiple samples and assessed the influence of follow-up time and number of observations. Estimates of cross-sectional measurement error and brain change variance were obtained using the longitudinal FreeSurfer processing stream. Our findings showed, on average, modest longitudinal reliability with two years of follow-up. Increasing the follow-up time was associated with a substantial increase in longitudinal reliability while the impact of increasing the number of observations was comparatively minor. On average, 2-year follow-up studies require ≈2.7 and ≈4.0 times more individuals than designs with follow-ups of 4 and 6 years to achieve comparable statistical power. Subcortical volume exhibited higher longitudinal reliability compared to cortical area, thickness, and volume. The reliability estimates were comparable to those estimated from empirical data. The reliability estimates were affected by both the cohort’s age where younger adults had lower reliability of change, and the preprocessing pipeline where the FreeSurfer’s longitudinal stream was notably superior than the cross-sectional. Suboptimal reliability inflated sample size requirements and compromised the ability to distinguish individual trajectories of brain aging. This study underscores the importance of long-term follow-ups and the need to consider reliability in longitudinal neuroimaging research.
0

Self-reported sleep problems are related to cortical thinning in aging but not memory decline and amyloid-β accumulation – results from the Lifebrain consortium

Anders Fjell et al.Apr 28, 2020
Abstract Background Older persons with poor sleep are more likely to develop neurodegenerative disease, but the causality underlying this association is unclear. To move towards explanation, we examine whether sleep quality and quantity are similarly associated with brain changes across the adult lifespan. Methods Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index;PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n=2205, 4363 MRIs, 18-92 years). Analyses were augmented by considering episodic memory change, gene expression from the Allen Human Brain Atlas, and amyloid-beta (Aβ) accumulation (n=1980). Results PSQI components sleep problems and low sleep quality were related to thinning of the right lateral temporal cortex. The association with sleep problems emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. BMI and symptoms of depression had negligible effects. Sleep problems were neither related to longitudinal change in episodic memory function nor to Aβ accumulation, suggesting that sleep-related cortical changes were independent of AD neuropathology and cognitive decline. Conclusion Worse self-reported sleep in later adulthood was associated with more cortical thinning in regions of high expression of genes related to oligodendrocytes and S1 pyramidal neurons, but not to Aβ accumulation or memory decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes, except for a few restricted regions, indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
Load More