WT
Wai Tse
Author with expertise in Diagnosis and Management of Congenital Diaphragmatic Hernia
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
8
h-index:
12
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Proteomic Profiling of Hypoplastic Lungs Suggests an Underlying Inflammatory Response in the Pathogenesis of Abnormal Lung Development in Congenital Diaphragmatic Hernia

Richard Wagner et al.Mar 7, 2022
+14
S
D
R
Abstract The pathogenesis of lung hypoplasia in congenital diaphragmatic hernia (CDH), a common birth defect, is poorly understood. The diaphragmatic defect can be repaired surgically, but the abnormal lung development contributes to a high mortality in these patients. To better understand the underlying pathobiology, we used the nitrofen rat model of CDH and characterized the proteome of hypoplastic CDH lungs at the alveolar stage (E21). Amongst the 218 significantly altered proteins between CDH and control lungs were Tenascin C, CREBBP, LYN and STAT3. We showed that Tenascin C was decreased around the distal airway branches in nitrofen and human fetal CDH lungs. In contrast, STAT3 was significantly increased in the airway epithelium of nitrofen lungs at E21. STAT3 inhibition after direct nitrofen exposure to fetal rat lung explants (E14.5) partially reversed the hypoplastic lung phenotype ex vivo by increasing peripheral lung budding. Moreover, we demonstrated that several STAT3 associated cytokines (IL-15, IL-9, IL-2) are increased in fetal tracheal aspirates of CDH survivors compared to non-survivors after fetoscopic tracheal occlusion. Using pathway analysis for significantly altered proteins in our proteomic analysis, we observed an enrichment in inflammatory response associated with Epstein Barr Virus and cytokine signaling in nitrofen CDH lungs. However, we were unable to detect EBV mRNA via in-situ Hybridization in human CDH lungs. With our unbiased proteomics approach, we show for the first time that inflammatory processes are likely underlying the pathogenesis of abnormal lung development in CDH.
1
Citation5
0
Save
2

A tracheal aspirate-derived airway basal cell model reveals a proinflammatory epithelial defect in congenital diaphragmatic hernia

Richard Wagner et al.Nov 12, 2022
+11
W
G
R
ABSTRACT Rationale Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm and lung hypoplasia. The pathophysiology of lung defects in CDH is poorly understood. Objectives To establish a translational model of human airway epithelium in CDH for pathogenic investigation and therapeutic testing. Methods We developed a robust methodology of epithelial progenitor derivation from tracheal aspirates of newborns. Basal stem cells (BSCs) from CDH patients and preterm and term, non-CDH controls were derived and analyzed by bulk RNA-sequencing, ATAC-sequencing, and air-liquidinterface differentiation. Lung sections from fetal human CDH samples and the nitrofen rat model of CDH were subjected to histological assessment of epithelial defects. Therapeutics to restore epithelial differentiation were evaluated in human epithelial cell culture and the nitrofen rat model of CDH. Measurements and Main Results Transcriptomic and epigenetic profiling of CDH and non-CDH basal stem cells reveals a disease-specific, proinflammatory signature independent of severity or hernia size. In addition, CDH basal stem cells exhibit defective epithelial differentiation in vitro that recapitulates epithelial phenotypes found in fetal human CDH lung samples and fetal tracheas of the nitrofen rat model of CDH. Furthermore, steroid treatment normalizes epithelial differentiation phenotypes of human CDH basal stem cells in vitro and in nitrofen rat tracheas in vivo . Conclusions Our findings have identified an underlying proinflammatory signature and BSC differentiation defects as a potential therapeutic target for airway epithelial defects in CDH.
2
Citation2
0
Save
1

Overactivated epithelial NF-κB disrupts lung development in human and nitrofen CDH

Florentine Dylong et al.Apr 7, 2023
+12
G
J
F
Abstract Background & Objective Abnormal lung development is the main cause of morbidity and mortality in neonates with congenital diaphragmatic hernia (CDH), a common birth defect (1:2500) of largely unknown pathobiology. Recent studies discovered that inflammatory processes, and specifically NF-κB associated pathways are enriched in human and experimental CDH. However, the molecular signaling of NF-κB in abnormal CDH lung development and its potential as a therapeutic target requires further investigation. Methods & Results Using sections and hypoplastic lung explant cultures from the nitrofen rat model of CDH and human fetal CDH lungs, we demonstrate that NF-κB and its downstream transcriptional targets are hyperactive during abnormal lung formation in CDH. NF-κB activity was especially elevated in the airway epithelium of nitrofen and human CDH lungs at different developmental stages. Fetal rat lung explants had impaired pseudoglandular airway branching after exposure to nitrofen, together with increased phosphorylation and transcriptional activity of NF-κB. Dexamethasone, the broad and clinically applicable anti-inflammatory NF-κB antagonist, rescued lung branching and normalized NF-κB signaling in hypoplastic lung explants. Moreover, specific NF-κB inhibition with curcumenol similarly rescued ex vivo lung hypoplasia and restored NF-κB signaling. Lastly, we showed that prenatal intraperitoneal dexamethasone administration to pregnant rat dams carrying fetuses with hypoplastic lungs, significantly improves lung branching and normalizes NF-κB in vivo . Conclusions: Our results indicate that NF-κB is aberrantly activated in human and nitrofen CDH lungs. Anti-inflammatory treatment with dexamethasone and/ or specific NF-κB inhibition should be investigated further as a therapeutic avenue to target lung hypoplasia in CDH.
1
Citation1
0
Save
0

Experimental congenital diaphragmatic hernia features an alteration of DNA sensing targets cGAS and STING

Moritz Markel et al.May 30, 2024
+8
N
W
M