DP
Didier Picard
Author with expertise in Molecular Chaperones in Protein Folding and Disease
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(40% Open Access)
Cited by:
4,835
h-index:
65
/
i10-index:
145
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor.

Didier Picard et al.Nov 1, 1987
K
D
Research Article1 November 1987free access Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. D. Picard D. Picard Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448. Search for more papers by this author K. R. Yamamoto K. R. Yamamoto Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448. Search for more papers by this author D. Picard D. Picard Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448. Search for more papers by this author K. R. Yamamoto K. R. Yamamoto Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448. Search for more papers by this author Author Information D. Picard1 and K. R. Yamamoto1 1Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448. The EMBO Journal (1987)6:3333-3340https://doi.org/10.1002/j.1460-2075.1987.tb02654.x PDFDownload PDF of article text and main figures. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info We have detected nuclear localization signals within the 795 amino acid rat glucocorticoid receptor. Using a transient expression assay, we monitored by immunofluorescence the subcellular distribution of receptor derivatives and beta-galactosidase-receptor fusion proteins. Two distinct nuclear localization signals, NL1 and NL2, were defined. NL1 maps to a 28 amino acid segment closely associated, but not coincident with the DNA binding domain; NL2 resides within a 256 amino acid region that also includes the hormone binding domain. Most importantly, nuclear localization of fusion proteins containing either the full-length receptor or the NL2 region alone is fully hormone-dependent; similar results were obtained with the wild-type receptor, provided the analysis was performed in medium lacking serum and phenol red. The rate of hormone-induced nuclear localization of an NL2-containing fusion protein is consistent with the rapid kinetics of hormone-regulated transcription mediated by the receptor. Thus, hormonal control of nuclear localization contributes to the modulation of glucocorticoid receptor transcriptional regulatory activity. Previous ArticleNext Article Volume 6Issue 111 November 1987In this issue RelatedDetailsLoading ...
0
Citation994
0
Save
0

Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation.

Giuseppe Bunone et al.May 1, 1996
D
R
P
G
The estrogen receptor (ER) can be activated as a transcription factor either by binding of cognate estrogenic ligand or, indirectly, by a variety of other extracellular signals. As a first step towards elucidating the mechanism of 'steroid-independent activation' of the ER by the epidermal growth factor (EGF), we have mapped the ER target domain and determined the signaling pathway. We show that the N-terminal transcriptional activation function AF-1, but not the C-terminal AF-2, is necessary for the EGF response. Both the EGF-induced hyperphosphorylation and the transcriptional activation of the unliganded ER depend on a phosphorylatable serine residue at position 118. However, its phosphorylation is not sufficient and, hence, there must be other target domains or proteins which fulfill an additional requirement for EGF signaling through the ER. Using dominant-negative Ras and MAP kinase kinase (MAPK kinase) and constitutively active MAPK kinase mutants, we show that EGF activates the ER by signaling through the MAPK pathway suggesting that MAPK directly phosphorylates the critical serine 118. Our results also imply that the steroid-independent activation of a variety of ER mutants, which arise during the malignant progression of breast tumors, may contribute to tamoxifen resistance.
0
Citation980
0
Save
0

Reduced levels of hsp90 compromise steroid receptor action in vivo

Didier Picard et al.Nov 1, 1990
+3
M
B
D
0
Citation788
0
Save
0

A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor

Didier Picard et al.Sep 1, 1988
K
S
D
The glucocorticoid receptor is a signal transducer that interacts both with the signal and with the genes it regulates. We showed previously that nuclear localization of the receptor requires hormone binding. We have now constructed recombinant receptors that relieve hormonal control of nuclear localization, and we demonstrate that the DNA binding/transcriptional regulatory functions of the receptor are also regulated directly by hormone. Surprisingly, regulation by the steroid binding domain appears to be relatively independent of protein structure. For example, regulation is maintained when the steroid binding region is repositioned from the C-terminus to the N-terminus of the receptor. Furthermore, the activity of an unrelated protein, the adenovirus E1A gene product, becomes hormone regulated upon fusion to the steroid binding domain. We speculate that the inhibitory effect of the unliganded steroid binding domain may be mediated by heat shock protein hsp90, which binds selectively to the unliganded receptor.
0
Citation426
0
Save
0

The G Protein-coupled Receptor GPR30 Mediates c-fos Up-regulation by 17β-Estradiol and Phytoestrogens in Breast Cancer Cells

Marcello Maggiolini et al.Jun 1, 2004
+7
G
A
M
A growing body of evidence concerning estrogen effects cannot be explained by the classic model of hormone action, which involves the binding to estrogen receptors (ERs) α and ERβ and the interaction of the steroid-receptor complex with specific DNA sequences associated with target genes. Using c-fos proto-oncogene expression as an early molecular sensor of estrogen action in ERα-positive MCF7 and ER-negative SKBR3 breast cancer cells, we have discovered that 17β-estradiol (E2), and the two major phytoestrogens, genistein and quercetin, stimulate c-fos expression through ERα as well as through an ER-independent manner via the G protein-coupled receptor homologue GPR30. The c-fos response is repressed in GPR30-expressing SKBR3 cells transfected with an antisense oligonucleotide against GPR30 and reconstituted in GPR30-deficient MDA-MB 231 and BT-20 breast cancer cells transfected with a GPR30 expression vector. GPR30-dependent activation of ERK1/2 by E2 and phytoestrogens occurs via a Gβγ-associated pertussis toxin-sensitive pathway that requires both Src-related and EGF receptor tyrosine kinase activities. The ability of E2 and phytoestrogens to regulate the expression of growth-related genes such as c-fos even in the absence of ER has interesting implications for understanding breast cancer progression. A growing body of evidence concerning estrogen effects cannot be explained by the classic model of hormone action, which involves the binding to estrogen receptors (ERs) α and ERβ and the interaction of the steroid-receptor complex with specific DNA sequences associated with target genes. Using c-fos proto-oncogene expression as an early molecular sensor of estrogen action in ERα-positive MCF7 and ER-negative SKBR3 breast cancer cells, we have discovered that 17β-estradiol (E2), and the two major phytoestrogens, genistein and quercetin, stimulate c-fos expression through ERα as well as through an ER-independent manner via the G protein-coupled receptor homologue GPR30. The c-fos response is repressed in GPR30-expressing SKBR3 cells transfected with an antisense oligonucleotide against GPR30 and reconstituted in GPR30-deficient MDA-MB 231 and BT-20 breast cancer cells transfected with a GPR30 expression vector. GPR30-dependent activation of ERK1/2 by E2 and phytoestrogens occurs via a Gβγ-associated pertussis toxin-sensitive pathway that requires both Src-related and EGF receptor tyrosine kinase activities. The ability of E2 and phytoestrogens to regulate the expression of growth-related genes such as c-fos even in the absence of ER has interesting implications for understanding breast cancer progression. Estradiol (E2) 1The abbreviations used are: E2, 17β-estradiol; ER, estrogen receptor; ERE, estrogen-responsive element; GPR, G protein-coupled receptor; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; OHT, hydroxytamoxifen; RT, reverse transcriptase; PI3K, phosphatidylinositol 3-kinase; DN, dominant negative; EGF, epidermal growth factor; EGFR, EGF receptor.1The abbreviations used are: E2, 17β-estradiol; ER, estrogen receptor; ERE, estrogen-responsive element; GPR, G protein-coupled receptor; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; OHT, hydroxytamoxifen; RT, reverse transcriptase; PI3K, phosphatidylinositol 3-kinase; DN, dominant negative; EGF, epidermal growth factor; EGFR, EGF receptor. and natural estrogen-like compounds, such as genistein and quercetin, bind to and activate estrogen receptors (ER) α and β, which in turn regulate the expression of target genes directly and/or indirectly via protein-protein interactions with other transcription factors (1Beato M. Cell. 1989; 58: 335-344Abstract Full Text PDF Scopus (2838) Google Scholar, 2Truss M. Beato M. Endocrine Rev. 1993; 14: 459-479Crossref PubMed Scopus (0) Google Scholar, 3Tsai M.-J. O'Malley B.W. Annu. Rev. Biochem. 1994; 63: 451-486Crossref PubMed Scopus (2666) Google Scholar, 4Maggiolini M. Bonofiglio D. Marsico S. Panno M.L. Cenni B. Picard D. Andò S. Mol. Pharmacol. 2001; 60: 595-602PubMed Google Scholar, 5Maggiolini M. Statti G. Vivacqua A. Gabriele S. Rago V. Loizzo M. Menichini F. Andò S. J. Steroid Biochem. Mol. Biol. 2002; 82: 315-322Crossref PubMed Scopus (140) Google Scholar, 6Vivacqua A. Recchia A.G. Fasanella G. Gabriele S. Carpino A. Rago V. Di Gioia M.L. Leggio A. Bonofiglio D. Maggiolini M. Liguori A. Endocrine. 2003; 22: 275-284Crossref PubMed Scopus (84) Google Scholar, 7Recchia A.G. Vivacqua A. Gabriele S. Carpino A. Fasanella G. Rago V. Bonofiglio D. Maggiolini M. Food Addit. Contam. 2004; 21: 134-144Crossref PubMed Scopus (31) Google Scholar). Although it is often, but not always, straightforward to link the physiological effects of estrogens to the genomic model of the ligand-receptor complex activity, considerable controversy still exists on the ability of E2 to elicit transcriptional responses independently of ERα and ERβ. A variety of molecules located close to the plasma membrane, such as the G protein-coupled receptors (GPRs) (8Razandi M. Pedram A. Greene G.L. Levin E.R. Mol. Endocrinol. 1999; 13: 307-319Crossref PubMed Scopus (998) Google Scholar, 9Filardo E.J. Quinn J.A. Bland K.I. Frackelton Jr., A.R. Mol. Endocrinol. 2000; 10: 1649-1660Crossref Scopus (1111) Google Scholar, 10Wyckoff M.H. Chambliss K.L. Mineo C. Yuhanna I.S. Mendelsohn M.E. Mumby S.M. Shaul P.W. J. Biol. Chem. 2001; 276: 27071-27076Abstract Full Text Full Text PDF PubMed Scopus (261) Google Scholar, 11Kroeze W.K. Sheffler D.J. Roth B.L. J. Cell Sci. 2003; 116: 4867-4869Crossref PubMed Scopus (249) Google Scholar), Src, Ras, and Raf (12Migliaccio A. Di Domenico M. Castoria G. de Falco A. Bontempo P. Nola E. Auricchio F. EMBO J. 1996; 15: 1292-1300Crossref PubMed Scopus (857) Google Scholar, 13Singh M. Setalo Jr., G. Guan X. Warren M. Toran-Allerand C.D. J. Neurosci. 1999; 19: 1179-1188Crossref PubMed Google Scholar, 14Migliaccio A. Castoria G. Di Domenico M. de Falco A. Bilancio A. Lombardi M. Vitorria Barone M. Ametrano D. Zannini M.S. Abbondanza C. Bontempo P. Auricchio F. EMBO J. 2000; 19: 5406-5417Crossref PubMed Google Scholar), have recently been recognized to mediate multiple extracellular stimuli, such as those induced by E2, in a cell context-specific manner (15Morey A.K. Pedram A. Razandi M. Prins B.A. Hu R.-M. Biesiada E. Levin E.R. Endocrinology. 1997; 138: 3330-3339Crossref PubMed Scopus (144) Google Scholar, 16Razandi M. Pedram A. Levin E.R. Mol. Endocrinol. 2000; 14: 1434-1447Crossref PubMed Google Scholar, 17Shevde N.K. Bendixen A.C. Dienger K.M. Pike J.W. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 7829-7834Crossref PubMed Scopus (401) Google Scholar, 18Kousteni S. Bellido T. Plotkin L.I. O'Brien C.A. Bodenner D.L. Han L. Han K. DiGregorio G.B. Katzenellenbogen J.A. Katzenellenbogen B.S. Roberson P.K. Weinstein R.S. Jilka R.L. Manolagas S.C. Cell. 2001; 104: 719-730Abstract Full Text Full Text PDF PubMed Google Scholar). For instance, it has been proposed that in breast cancer cells, E2 induces ERK phosphorylation via the orphan GPR, named GPR30 (9Filardo E.J. Quinn J.A. Bland K.I. Frackelton Jr., A.R. Mol. Endocrinol. 2000; 10: 1649-1660Crossref Scopus (1111) Google Scholar). Interestingly, such responses elicited by E2 do not require ER expression and/or localization at the membrane level, as shown on the contrary by other investigations in various cell types (8Razandi M. Pedram A. Greene G.L. Levin E.R. Mol. Endocrinol. 1999; 13: 307-319Crossref PubMed Scopus (998) Google Scholar, 14Migliaccio A. Castoria G. Di Domenico M. de Falco A. Bilancio A. Lombardi M. Vitorria Barone M. Ametrano D. Zannini M.S. Abbondanza C. Bontempo P. Auricchio F. EMBO J. 2000; 19: 5406-5417Crossref PubMed Google Scholar, 19Singer C.A. Figueroa-Masot X.A. Batchelor R.H. Dorsa D.M. J. Neurosci. 1999; 19: 2455-2463Crossref PubMed Google Scholar, 20Russell K.S. Haynes M.P. Sinha D. Clerisme E. Bender J.R. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 5930-5935Crossref PubMed Scopus (336) Google Scholar, 21Razandi M. Oh P. Pedram A. Schnitzer J. Levin E.R. Mol. Endocrinol. 2002; 16: 100-115Crossref PubMed Scopus (298) Google Scholar, 22Zhu Y. Bian Z. Lu P. Karas R.H. Bao L. Cox D. Hodgin J. Shaul P.W. Thoren P. Smithies O. Gustafsson J.A. Mendelsohn M.E. Science. 2002; 295: 505-508Crossref PubMed Scopus (409) Google Scholar, 23Razandi M. Pedram A. Park S.T. Levin E.R. J. Biol. Chem. 2003; 278: 2701-2712Abstract Full Text Full Text PDF PubMed Scopus (413) Google Scholar). In this respect, the potential of E2 to trigger different pathways that integrate cell surface signaling with gene transcription has attracted an increased interest toward the identification of agonistic or antagonistic compounds. The proto-oncogene c-fos plays a relevant role in the regulation of normal cell growth, differentiation, and cellular transformation processes (24Muller R. Biochim. Biophys. Acta. 1986; 823: 207-225PubMed Google Scholar, 25Cohen D.R. Curran T. Crit. Rev. Oncog. 1989; 1: 65-88PubMed Google Scholar, 26Curran T. Reddy E.P. Skalka A.M. Curran T. The Oncogene Handbook. Elsevier Science Publishers B.V., Amsterdam1988: 307-325Google Scholar, 27Curran T. Franza Jr., B.R. Cell. 1988; 55: 395-397Abstract Full Text PDF PubMed Scopus (1307) Google Scholar). Besides, c-fos represents a prototypical “immediate early” gene since its expression is rapidly induced by different extracellular stimuli including mitogens and hormones (28Treisman R. Cell. 1986; 46: 567-574Abstract Full Text PDF PubMed Scopus (526) Google Scholar, 29Fisch T.M. Prywes R. Roeder R.G. Mol. Cell. Biol. 1987; 7: 3490-3502Crossref PubMed Scopus (210) Google Scholar, 30Wilding G. Lippman M.E. Gelmann E.P. Cancer Res. 1988; 48: 802-805PubMed Google Scholar, 31Shaw P.E. Schroter H. Nordheim A. Cell. 1989; 56: 563-572Abstract Full Text PDF PubMed Scopus (346) Google Scholar, 32Van der Burg B. Van Selm-Miltenburg A.J.P. De Laat S.W. Van Zoelen E.J.J. Mol. Cell. Endocrinol. 1989; 64: 223-228Crossref PubMed Scopus (125) Google Scholar, 33McDonnell S.E. Kerr L.D. Matrisian L.M. Mol. Cell. Biol. 1990; 10: 4284-4293Crossref PubMed Scopus (166) Google Scholar, 34Rivera V.M. Greenberg M.E. New Biol. 1990; 2: 751-758PubMed Google Scholar, 35Rivera V.M. Sheng M. Greenberg M.E. Genes Dev. 1990; 4: 255-268Crossref PubMed Scopus (104) Google Scholar, 36Van der Burg B. De Groot R.P. Isbrücker L. Kruijer W. De Laat S.W. Mol. Endocrinol. 1990; 4: 1720-1726Crossref PubMed Scopus (47) Google Scholar, 37Candeliere G.A. Prud'homme J. St-Arnaud R. Mol. Endocrinol. 1991; 5: 1780-1788Crossref PubMed Scopus (45) Google Scholar, 38Van der Burg B. De Groot R.P. Isbrucker L. Kruijer W. De Laat S.W. J. Steroid Biochem. Mol. Biol. 1991; 40: 215-221Crossref PubMed Scopus (34) Google Scholar, 39Weisz A. Bresciani F. Crit. Rev. Oncog. 1993; 4: 361-388PubMed Google Scholar, 40Ginty D.D. Bonni A. Greenberg M.E. Cell. 1994; 77: 713-725Abstract Full Text PDF PubMed Scopus (673) Google Scholar, 41Lee K. Deeds J.D. Chiba S. Un-No M. Bond A.T. Segre G.V. Endocrinology. 1994; 134: 441-450Crossref PubMed Scopus (184) Google Scholar, 42Hill C.S. Treisman R. EMBO J. 1995; 14: 5037-5047Crossref PubMed Scopus (209) Google Scholar, 43Bonapace I.M. Addeo R. Altucci L. Cicatiello L. Bifulco M. Laezza C. Salzano S. Sica V. Bresciani F. Weisz A. Oncogene. 1996; 12: 753-763PubMed Google Scholar). The nuclear protein encoded by c-fos interacts with c-jun family members to form the heterodimeric activating protein-1 transcription factor complex (24Muller R. Biochim. Biophys. Acta. 1986; 823: 207-225PubMed Google Scholar, 25Cohen D.R. Curran T. Crit. Rev. Oncog. 1989; 1: 65-88PubMed Google Scholar, 26Curran T. Reddy E.P. Skalka A.M. Curran T. The Oncogene Handbook. Elsevier Science Publishers B.V., Amsterdam1988: 307-325Google Scholar, 27Curran T. Franza Jr., B.R. Cell. 1988; 55: 395-397Abstract Full Text PDF PubMed Scopus (1307) Google Scholar). The fos-jun heterodimers binding to activating protein-1 sites located within mammalian gene promoters regulates gene expression in a specific manner depending on cellular and promoter context as well as interacting proteins (44Gaub M. Bellard M. Scheuer I. Chambon P. Sassone-Corsi P. Cell. 1990; 63: 1267-1276Abstract Full Text PDF PubMed Scopus (417) Google Scholar, 45Doucas V. Spyrou G. Yaniv M. EMBO J. 1991; 10: 2237-2245Crossref PubMed Scopus (106) Google Scholar, 46Shemshedini L. Knauthe R. Sassone-Corsi P. Pornon A. Gronemeyer H. EMBO J. 1991; 10: 3839-3849Crossref PubMed Scopus (170) Google Scholar, 47Tzukerman M. Zhang X. Pfahl M. Mol. Endocrinol. 1991; 5: 1983-1992Crossref PubMed Scopus (79) Google Scholar, 48Umayahara Y. Kawamori R. Watada H. Imano E. Iwama N. Morishima T. Yamasaki Y. Kajimoto Y. Kamada T. J. Biol. Chem. 1994; 269: 16433-16442Abstract Full Text PDF PubMed Google Scholar, 49Webb P. Lopez G.N. Uht R.M. Kuchner P.J. Mol. Endocrinol. 1995; 9: 443-456Crossref PubMed Google Scholar). Moreover, c-fos and other members of the fos family, such as fosB, fra-1, and fra-2, bind to sites identified in the regulatory region of target genes modulating the late response expression of critical factors for cell cycle re-entry, such as cyclin D1 (Ref. 50Brown J.R. Nigh E. Lee R.J. Ye H. Thompson M.A. Saudou F. Pestell R.G. Greenberg M.E. Mol. Cell. Biol. 1998; 18: 5609-5619Crossref PubMed Scopus (205) Google Scholar and references therein). The transcription of c-fos is controlled by multiple cis-elements present in the gene promoter: the cAMP-response element that binds to cAMP-response element-binding protein (51Sheng M. Thompson M.A. Greenberg M.E. Science. 1991; 252: 1427-1430Crossref PubMed Scopus (1268) Google Scholar), the Sis-inducible enhancer that is recognized by the signal transducers and activators of transcription (STAT) group of transcription factors (52Darnell J.E. Kerr I.M. Stark G.R. Science. 1994; 264: 1415-1421Crossref PubMed Scopus (4912) Google Scholar), the serum-response element that mediates c-fos induction by growth factors, and other extracellular stimuli leading to activation of MAPK pathways (53Treisman R. Semin. Cancer Biol. 1990; 1: 47-58PubMed Google Scholar, 54Karin M. Curr. Opin. Cell Biol. 1994; 6: 415-424Crossref PubMed Scopus (359) Google Scholar, 55Treisman R. Curr. Opin. Genet. Dev. 1994; 4: 96-101Crossref PubMed Scopus (618) Google Scholar, 56Karin M. Hunter T. Curr. Biol. 1995; 5: 747-757Abstract Full Text Full Text PDF PubMed Scopus (656) Google Scholar, 57Treisman R. EMBO J. 1995; 14: 4905-4913Crossref PubMed Scopus (345) Google Scholar). The serum-response element initially binds a dimer of the serum-response factor, the binding of which recruits the ternary complex factors including Elk-1 and serum-response factor accessory protein 1 and 2 (54Karin M. Curr. Opin. Cell Biol. 1994; 6: 415-424Crossref PubMed Scopus (359) Google Scholar). Several studies have shown that ERα also activates c-fos expression in breast cancer cells and that the hormone-sensitive site is localized to a 240-bp region (–1300 to –1060) (30Wilding G. Lippman M.E. Gelmann E.P. Cancer Res. 1988; 48: 802-805PubMed Google Scholar, 32Van der Burg B. Van Selm-Miltenburg A.J.P. De Laat S.W. Van Zoelen E.J.J. Mol. Cell. Endocrinol. 1989; 64: 223-228Crossref PubMed Scopus (125) Google Scholar, 36Van der Burg B. De Groot R.P. Isbrücker L. Kruijer W. De Laat S.W. Mol. Endocrinol. 1990; 4: 1720-1726Crossref PubMed Scopus (47) Google Scholar, 38Van der Burg B. De Groot R.P. Isbrucker L. Kruijer W. De Laat S.W. J. Steroid Biochem. Mol. Biol. 1991; 40: 215-221Crossref PubMed Scopus (34) Google Scholar, 39Weisz A. Bresciani F. Crit. Rev. Oncog. 1993; 4: 361-388PubMed Google Scholar, 43Bonapace I.M. Addeo R. Altucci L. Cicatiello L. Bifulco M. Laezza C. Salzano S. Sica V. Bresciani F. Weisz A. Oncogene. 1996; 12: 753-763PubMed Google Scholar, 45Doucas V. Spyrou G. Yaniv M. EMBO J. 1991; 10: 2237-2245Crossref PubMed Scopus (106) Google Scholar). Further analysis demonstrated an imperfect palindromic estrogen-responsive element (ERE) within this sequence that is able to bind ERα in gel mobility shift assays but is not sufficient for transactivation (58Duan R. Porter W. Safe S. Endocrinology. 1998; 139: 1981-1990Crossref PubMed Google Scholar). Thereafter, it was shown that ERα must interact with Sp1 at a GC-rich site downstream from the imperfect palindromic ERE (58Duan R. Porter W. Safe S. Endocrinology. 1998; 139: 1981-1990Crossref PubMed Google Scholar). In a subsequent study (59Duan R. Xie W. Burghardt R.C. Safe S. J. Biol. Chem. 2001; 276: 11590-11598Abstract Full Text Full Text PDF PubMed Scopus (129) Google Scholar), both growth factors and E2 seem to converge on the serum-response element. In the latter case, however, the activation by E2 involved non-genomic signaling of ERα through the MAPK signaling pathway and phosphorylation and binding of Elk-1 to the serum-response element. Herein, we show that early c-fos expression induced by E2 as well as the phytoestrogens genistein and quercetin is mediated at least in part by ERα in MCF7 breast cancer cells. However, the same agents are able to stimulate c-fos expression independently of ER expression in ER-negative breast cancer cells via GPR30. Reagents—17β-estradiol, genistein, quercetin, 4-hydroxytamoxifen, cycloheximide, wortmannin, pertussis toxin, PD 98059, LY 294002, dexamethasone, progesterone were purchased from Sigma. R1881, ICI 182780, tyrphostin AG 1478, and PP2 were obtained from AstraZeneca (Milan, Italy), Tocris Chemicals (Bristol, UK), Biomol Research Laboratories, Inc (DBA, Milan, Italy), and Calbiochem, respectively. All compounds were solubilized in dimethyl sulfoxide, except E2, hydroxytamoxifen (OHT), PD 98059, and LY 294002, which were dissolved in ethanol. Plasmids—The firefly luciferase reporter plasmids were c-fos and the deletion mutant c-fosΔERE (which lacks the ERE sequence) encoding –2.2-kb and –1172-bp 5′ upstream fragments of human c-fos, respectively (gifts from K. Nose, Tokyo, Japan) (60Kim-Kaneyama J. Shibanuma M. Nose K. Biochem. Biophys. Res. Comm. 2002; 299: 360-365Crossref PubMed Scopus (30) Google Scholar) and Gal4-luc for the Gal4-Elk1 fusion protein. The latter two plasmids were described together with menin in our previous study (61Gallo A. Cuozzo C. Esposito I. Maggiolini M. Bonofiglio D. Vivacqua A. Garriamone M. Weiss C. Bohmann D. Musti A.M. Oncogene. 2002; 21: 6434-6445Crossref PubMed Scopus (76) Google Scholar). GPR30 and dominant negative ERK2 (DN/ERK2) expression vectors were kindly provided by R. Weigel (Philadelphia, PA) and M. Cobb (Dallas, TX). The Renilla luciferase expression vector pRL-TK (Promega, Milan, Italy) was used as a transfection standard. Cell Culture—MCF7, MDA-MB-231, BT-20 human breast cancer cells were a gift from E. Surmacz (Philadelphia, PA), whereas SKBR3 human breast cancer cells were from Picard's laboratory (Genève, Switzerland). MCF7 and MDA-MB-231 cells were maintained in Dulbecco's modified Eagle's medium/F12 without phenol red supplemented with 10% fetal bovine serum (Invitrogen), whereas SKBR3 cells were maintained in RPMI 1640 without phenol red supplemented with 10% fetal bovine serum (Invitrogen). Cells were switched to medium without serum 24 h before transfections, 48 h before RT-PCR or immunoblot, 72 h before the evaluation of ERK1/ERK2 phosphorylation. Transfections and Luciferase Assays—A total of 100,000 MCF7 cells were plated into 24-well dishes with 500 μl of regular growth medium/well the day before transfection. The medium was replaced with Dulbecco's modified Eagle's medium/F12 lacking phenol red and serum on the day of transfection, which was performed using FuGENE 6 reagent as recommended by the manufacturer (Roche Diagnostics) with a mixture containing 0.5 μg of reporter plasmid, 0.1 μg of effector plasmid where applicable, and 2 ng of pRLCMV. After 4 h, the medium was replaced again with serum-free Dulbecco's modified Eagle's medium lacking phenol red and containing 1 μm of each treatment, and then cells were incubated for 5 h. Luciferase activity was measured with the dual luciferase kit (Promega) according to the manufacturer's recommendations. Firefly luciferase values were normalized to the internal transfection control provided by the Renilla luciferase activity. The normalized relative light unit values obtained from untreated cells were set as 100%, upon which the activity induced by treatments was calculated. RT-PCR—The evaluation of gene expression was performed by semiquantitative RT-PCR as we have previously described (62Maggiolini M. Donzè O. Picard D. Biol. Chem. 1999; 380: 695-697Crossref PubMed Scopus (35) Google Scholar). For c-fos, pS2, cathepsin D, and GPR30, with 36B4 used as a control gene, the primers were: 5′-CCAACTTCATTCCCACGGTCAC-3′ (c-fos forward) and 5′-TGGCAATCTCGGTCTGCAAA-3′ (c-fos reverse); 5′-TTCTATCCTAATACCATCGACG-3′ (pS2 forward) and 5′-TTTGAGTAGTCAAAGTCAGAGC-3′ (pS2 reverse); 5′-AACAACAGGGTGGGCTTC-3′ (cathepsin D forward) and 5′-ATGCACGAAACAGATCTGTGCT-3′ (cathepsin D reverse); 5′-CTGGGGAGTTTCCTGTCTGA-3′ (GPR30 forward) and 5′-GCTTGGGAAGTCACATCCAT-3′ (GPR30 reverse); 5′-CTCAACATCTCCCCCTTCTC-3′ (36B4 forward) and 5′-CAAATCCCATATCCTCGTCC-3′ (36B4 reverse), to yield products of 381, 303, 210, 155 and 408 bp, respectively, with 20, 13, 20, 20, and 13 PCR cycles, respectively. Western Blotting—Cells were grown in 10-cm dishes and exposed to ligands for 2 or 12 h before lysis in 500 μlof 50 mm HEPES (pH 7.5), 150 mm NaCl, 1.5 mm MgCl2, 1 mm EGTA, 10% glycerol, 1% Triton X-100, 1% SDS, a mixture of protease inhibitors containing 1 mm aprotinin, 20 mm phenylmethylsulfonyl fluoride, and 0.2 m sodium orthovanadate. Protein concentration was determined by Bradford reagent according to the manufacturer's recommendations (Sigma). Equal amounts of whole protein extract were resolved on a 10% SDS-polyacrylamide gel, transferred to a nitrocellulose membrane (Amersham Biosciences), probed overnight at 4 °C with the antibodies against c-fos, β-actin (Santa Cruz Biotechnology, Santa Cruz, CA), and pERK1/2, ERK2 (Cell Signaling Technology, Inc, Celbio, Milan, Italy) and then revealed using the ECL system (Amersham Biosciences). Antisense Oligodeoxynucleotide Experiments—Antisense oligonucleotides were synthesized as described (63O'Dowd B.F. Nguyen T Marchese A. Cheng R. Lynch K.R. Heng H.H. Kolakowski Jr., L.F. George S.R. Genomics. 1998; 37: 310-313Crossref Scopus (248) Google Scholar, 64Lau K.-M. LaSpina M. Long J. Ho S.-M. Cancer Res. 2000; 60: 3175-3182PubMed Google Scholar, 65Taylor A.H. Pringle J.H. Bell S.C. Al-Azzawi F. Antisense Nucleic Acid Drug Dev. 2001; 11: 219-231Crossref PubMed Scopus (10) Google Scholar) and purchased from MWG (Florence, Italy). The oligonucleotides used were: 5′-TTGGGAAGTCACATCCAT-3′ for GPR30; and 5′-GATCTCAGCACGGCAAAT-3′ for the scrambled control (66Kanda N. Watanabe S. J. Investig. Dermatol. 2003; 121: 771-780Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar). For antisense experiments, a concentration of 200 nm of the indicated oligonucleotides was transfected following the procedure described above. Statistical Analysis—Statistical analysis was performed using analysis of variance followed by Newman-Keuls testing to determine differences in means. p < 0.05 was considered as statistically significant. E2, Genistein, and Quercetin Transactivate c-fos Promoter Constructs in MCF7 Cells—In our previous study (4Maggiolini M. Bonofiglio D. Marsico S. Panno M.L. Cenni B. Picard D. Andò S. Mol. Pharmacol. 2001; 60: 595-602PubMed Google Scholar), we demonstrated that an ERE reporter gene transfected in MCF7 cells responds to genistein and quercetin, like E2, through an ERα-mediated mechanism. Thus, in the present study, we first examined whether transiently transfected full-length human c-fos promoter (–2.2 kb) could respond to these phytoestrogens as reported previously for E2 (67Weisz A. Rosales R. Nucleic Acids Res. 1990; 18: 5097-5106Crossref PubMed Scopus (267) Google Scholar). Fig. 1A demonstrates that genistein and quercetin mirror E2 activity. Activation by all three compounds is sensitive to the MAPK inhibitor PD 98059 and is unaffected by the PI3K inhibitor wortmannin (or LY 294002, not shown). In our previous investigation (61Gallo A. Cuozzo C. Esposito I. Maggiolini M. Bonofiglio D. Vivacqua A. Garriamone M. Weiss C. Bohmann D. Musti A.M. Oncogene. 2002; 21: 6434-6445Crossref PubMed Scopus (76) Google Scholar), we showed that the nuclear protein encoded by the tumor suppressor gene MEN1, named menin, inhibits ERK-dependent phosphorylation and activation of the ternary complex factor member Elk-1, which regulates c-fos gene expression. Therefore, we evaluated the action of menin on the transactivation property of estrogenic compounds using the above mentioned c-fos promoter assay and a corresponding reporter gene assay for monitoring the activation of Gal4-Elk-1. As expected, luciferase activity of both constructs was reversed in the presence of menin (Fig. 1, A and B). The transactivation of Elk-1 by E2 and phytoestrogens confirmed its involvement in c-fos expression, whereas the inhibitory effects of PD 98059 indicated that a MAPK-dependent mechanism is required for such a response (Fig. 1B). Interestingly, the transcriptional potential of these compounds was maintained using a mutant of the c-fos promoter lacking the ERE region (–1172 bp), suggesting that other pathways, not requiring an ERα-ERE interaction, contribute to c-fos transactivation. E2, Genistein, and Quercetin Rapidly Induce c-fos mRNA Expression in ERα-positive MCF7 Cells—It has been largely reported (28Treisman R. Cell. 1986; 46: 567-574Abstract Full Text PDF PubMed Scopus (526) Google Scholar, 29Fisch T.M. Prywes R. Roeder R.G. Mol. Cell. Biol. 1987; 7: 3490-3502Crossref PubMed Scopus (210) Google Scholar, 30Wilding G. Lippman M.E. Gelmann E.P. Cancer Res. 1988; 48: 802-805PubMed Google Scholar, 31Shaw P.E. Schroter H. Nordheim A. Cell. 1989; 56: 563-572Abstract Full Text PDF PubMed Scopus (346) Google Scholar, 32Van der Burg B. Van Selm-Miltenburg A.J.P. De Laat S.W. Van Zoelen E.J.J. Mol. Cell. Endocrinol. 1989; 64: 223-228Crossref PubMed Scopus (125) Google Scholar, 33McDonnell S.E. Kerr L.D. Matrisian L.M. Mol. Cell. Biol. 1990; 10: 4284-4293Crossref PubMed Scopus (166) Google Scholar,35Rivera V.M. Sheng M. Greenberg M.E. Genes Dev. 1990; 4: 255-268Crossref PubMed Scopus (104) Google Scholar, 36Van der Burg B. De Groot R.P. Isbrücker L. Kruijer W. De Laat S.W. Mol. Endocrinol. 1990; 4: 1720-1726Crossref PubMed Scopus (47) Google Scholar, 37Candeliere G.A. Prud'homme J. St-Arnaud R. Mol. Endocrinol. 1991; 5: 1780-1788Crossref PubMed Scopus (45) Google Scholar, 38Van der Burg B. De Groot R.P. Isbrucker L. Kruijer W. De Laat S.W. J. Steroid Biochem. Mol. Biol. 1991; 40: 215-221Crossref PubMed Scopus (34) Google Scholar, 39Weisz A. Bresciani F. Crit. Rev. Oncog. 1993; 4: 361-388PubMed Google Scholar, 40Ginty D.D. Bonni A. Greenberg M.E. Cell. 1994; 77: 713-725Abstract Full Text PDF PubMed Scopus (673) Google Scholar, 41Lee K. Deeds J.D. Chiba S. Un-No M. Bond A.T. Segre G.V. Endocrinology. 1994; 134: 441-450Crossref PubMed Scopus (184) Google Scholar, 42Hill C.S. Treisman R. EMBO J. 1995; 14: 5037-5047Crossref PubMed Scopus (209) Google Scholar, 43Bonapace I.M. Addeo R. Altucci L. Cicatiello L. Bifulco M. Laezza C. Salzano S. Sica V. Bresciani F. Weisz A. Oncogene. 1996; 12: 753-763PubMed Google Scholar,45Doucas V. Spyrou G. Yaniv M. EMBO J. 1991; 10: 2237-2245Crossref PubMed Scopus (106) Google Scholar, 69Meyer D.J. Stephenson E.W. Johnson L. Cochran B.H. Schwartz J. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 6721-6725Crossref PubMed Scopus (72) Google Scholar, 70Cavigelli M. Dolfi F. Claret F.X. Karin M. EMBO J. 1995; 14: 5957-5964Crossref PubMed Scopus (483) Google Scholar, 71Price M.A. Cruzalegui F.H. Treisman R. EMBO J. 1996; 15: 6552-6563Crossref PubMed Scopus (300) Google Scholar, 72Liao J. Hodge C. Meyer D. Ho P.S. Rosenspire K. Schwartz J. J. Biol. Chem. 1997; 272: 25951-25958Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 73De Cesare D. Jacquot S. Hanauer A. Sassone-Corsi P. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 12202-12207Crossref PubMed Scopus (259) Google Scholar, 74Hodge C. Liao J. Stofega M. Guan K. Carter-Su C. Schwartz J. J. Biol. Chem. 1998; 273: 31327-31336Abstract Full Text Full Text PDF PubMed Scopus (229) Google Scholar, 75Wang Y. Falasca M. Schlessinger J. Malstrom S. Tsichlis P. Settleman J. Hu W. Lim B. Prywes R. Cell Growth & Differ. 1998; 9: 513-522PubMed Google Scholar, 76Soh J.W. Lee E.H. Prywes R. Weinstein I.B. Mol. Cell. Biol. 1999; 19: 1313-1324Crossref PubMed Scopus (246) Google Scholar) that c-fos is promptly stimulated by E2 and various agents. To evaluate whether phytoestrogens mimic E2 in this regard and in the activation of the two well known target genes pS2 and cathepsin D (77Cavailles V. Garcia M. Rochefort H. Mol. Endocrinol. 1989; 3: 552-558Crossref PubMed Scopus (163) Google Scholar), we performed a semiquantitative RT-PCR comparing the mRNA levels after standardization on the housekeeping gene encoding the ribosomal protein 36B4. A treatment for only 1 h with E2 and phytoestrogens up-regulated c-fos expression in ERα-positive MCF7 cells (Fig. 2A). The same results were obtained for pS2 and cathepsin D with a 12-h exposure, whereas c-fos returned to levels resembling those of untreated cells (Fig. 2B). E2, Genistein, and Quercetin Up-regulate c-fos Protein Levels in MCF7 Cells—The aforementioned results prompted us to evaluate whether c-fos protein levels follow the mRNA increase observed after a short (2-h) treatment of ERα-positive MCF7 cells. A similar exposure with E2, genistein, and quercetin also resulted in a significant c-fos protein induction (Fig. 3A) that was dependen
0
Citation426
0
Save
0

The G Protein-Coupled Receptor GPR30 Mediates the Proliferative Effects Induced by 17β-Estradiol and Hydroxytamoxifen in Endometrial Cancer Cells

Adele Vivacqua et al.Oct 26, 2005
+4
A
D
A
Abstract The growth of both normal and transformed epithelial cells of the female reproductive system is stimulated by estrogens, mainly through the activation of estrogen receptor α (ERα), which is a ligand-regulated transcription factor. The selective ER modulator tamoxifen (TAM) has been widely used as an ER antagonist in breast tumor; however, long-term treatment is associated with an increased risk of endometrial cancer. To provide new insights into the potential mechanisms involved in the agonistic activity exerted by TAM in the uterus, we evaluated the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, to transactivate wild-type ERα and its splice variant expressed in Ishikawa and HEC1A endometrial tumor cells, respectively. OHT was able to antagonize only the activation of ERα by 17β-estradiol (E2) in Ishikawa cells, whereas it up-regulated c-fos expression in a rapid manner similar to E2 and independently of ERα in both cell lines. This stimulation occurred through the G protein-coupled receptor named GPR30 and required Src-related and epidermal growth factor receptor tyrosine kinase activities, along with the activation of both ERK1/2 and phosphatidylinositol 3-kinase/AKT pathways. Most importantly, OHT, like E2, stimulated the proliferation of Ishikawa as well as HEC1A cells. Transfecting a GPR30 antisense expression vector in both endometrial cancer cell lines, OHT was no longer able to induce growth effects, whereas the proliferative response to E2 was completely abrogated only in HEC1A cells. Furthermore, in the presence of the inhibitors of MAPK and phosphatidylinositol 3-kinase pathways, PD 98059 and wortmannin, respectively, E2 and OHT did not elicit growth stimulation. Our data demonstrate a new mode of action of E2 and OHT in endometrial cancer cells, contributing to a better understanding of the molecular mechanisms involved in their uterine agonistic activity.
0
Citation334
0
Save
9

CRISPR/Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells

Dina Hany et al.Jun 3, 2022
D
V
D
Abstract In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to -independent remains unclear. With a genome-wide CRISPR/Cas9 knockout screen, we identified new biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We indicate that this is due to an elevated activity of cAMP-activated protein kinase A and mammalian target of rapamycin, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Based on these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.
9
Citation3
0
Save
4

Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life

Kaushik Bhattacharya et al.Feb 11, 2022
+8
S
S
K
Abstract The cytosolic molecular chaperone Hsp90 is essential for eukaryotic life 1, 2 . It is involved in multiple branches of proteostasis 2, 3 , and as a molecular capacitor in morphological evolution 4 . Although reduced Hsp90 levels cause phenotypic variations 5, 6 and correlate with aging 7 , whether eukaryotic cells and organisms can tune the basal Hsp90 protein levels to alleviate physiologically accumulated stress is unknown. To begin to explore this question, we investigated whether and how mice adapt to the deletion of three out of four alleles encoding cytosolic Hsp90, one Hsp90β allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90β protein to at least wild-type levels. Further mechanistic studies revealed an internal ribosome entry site in the 5’UTR of the Hsp90β mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We found that the minimum amount of total Hsp90 that is required to support viability of mammalian cells and organisms is 50-70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have been markedly increased during eukaryotic evolution. The incompressible part of the steady-state levels of Hsp90 may have increased to accommodate the ever-growing complexity of the proteome 8 on the path towards mammals.
4
Citation1
0
Save
Load More