SH
Steven Haase
Author with expertise in Stochasticity in Gene Regulatory Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
333
h-index:
25
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop

Bree Cummins et al.Jun 11, 2022
Abstract Computational tools addressing various components of design-build-test-learn loops (DBTL) for the construction of synthetic genetic networks exist, but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called DART (Design Assemble Round Trip). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection, and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions.
3

Conservation of dynamic characteristics of transcriptional regulatory elements in periodic biological processes

Francis Motta et al.Mar 17, 2022
Cell and circadian cycles control a large fraction of cell and organismal physiology by regulating large periodic transcriptional programs that encompass anywhere from 15 to 80% of the genome despite performing distinct functions. In each case, these large periodic transcriptional programs are controlled by gene regulatory networks (GRNs), and it has been shown through genetics and chromosome mapping approaches in model systems that at the core of these GRNs are small sets of genes that drive the transcript dynamics of the GRNs. However, it is unlikely that we have identified all of these core genes, even in model organisms. Moreover, large periodic transcriptional programs controlling a variety of processes certainly exist in important non-model organisms where genetic approaches to identifying networks are expensive, time-consuming, or intractable. Ideally, the core network components could be identified using data-driven approaches on the transcriptome dynamics data already available.This study shows that a unified set of quantified dynamic features of high-throughput time series gene expression data are more prominent in the core transcriptional regulators of cell and circadian cycles than in their outputs, in multiple organism, even in the presence of external periodic stimuli. Additionally, we observe that the power to discriminate between core and non-core genes is largely insensitive to the particular choice of quantification of these features.There are practical applications of the approach presented in this study for network inference, since the result is a ranking of genes that is enriched for core regulatory elements driving a periodic phenotype. In this way, the method provides a prioritization of follow-up genetic experiments. Furthermore, these findings reveal something unexpected-that there are shared dynamic features of the transcript abundance of core components of unrelated GRNs that control disparate periodic phenotypes.
3
Citation4
2
Save
6

Computational Prediction of Synthetic Circuit Function Across Growth Conditions

Bree Cummins et al.Jun 13, 2022
Abstract A challenge in the design and construction of synthetic genetic circuits is that they will operate within biological systems that have noisy and changing parameter regimes that are largely unmeasurable. The outcome is that these circuits do not operate within design specifications or have a narrow operational envelope in which they can function. This behavior is often observed as a lack of reproducibility in function from day to day or lab to lab. Moreover, this narrow range of operating conditions does not promote reproducible circuit function in deployments where environmental conditions for the chassis are changing, as environmental changes can affect the parameter space in which the circuit is operating. Here we describe a computational method for assessing the robustness of circuit function across broad parameter regions. Previously designed circuits are assessed by this computational method and then circuit performance is measured across multiple growth conditions in budding yeast. The computational predictions are correlated with experimental findings, suggesting that the approach has predictive value for assessing the robustness of a circuit design.
4

Learning perturbation-inducible cell states of novel compounds from observability analysis of transcriptome dynamics

Aqib Hasnain et al.May 28, 2022
Abstract A major challenge in biotechnology and biomanufacturing is the identification of a set of biomarkers for perturbations and metabolites of interest. Here, we develop a data-driven, transcriptome-wide approach to rank perturbation-inducible genes from time-series RNA sequencing data for the discovery of analyte-responsive promoters. This provides a set of biomarkers that act as a proxy for the transcriptional state referred to as cell state. We construct low-dimensional models of gene expression dynamics and rank genes by their ability to capture the perturbation-specific cell state using a novel observability analysis. Using this ranking, we extract 15 analyte-responsive promoters for the organophosphate malathion in the underutilized host organism Pseudomonas fluorescens SBW25. We develop synthetic genetic reporters from each analyte-responsive promoter and characterize their response to malathion. Furthermore, we enhance malathion reporting through the aggregation of the response of individual reporters with a synthetic consortium approach, and we exemplify the library’s ability to be useful outside the lab by detecting malathion in the environment. The library of living malathion sensors can be optimized for use in environmental diagnostics while the developed machine learning tool can be applied to discover perturbation-inducible gene expression systems in the compendium of host organisms.
4
Citation1
0
Save
2

Conservation of dynamic characteristics of transcriptional regulatory elements in periodic biological processes

Francis Motta et al.Oct 12, 2020
Abstract Cell and circadian cycles control a large fraction of cell and organismal physiology by regulating large periodic transcriptional programs that encompass anywhere from 15-80% of the genome. The gene-regulatory networks (GRNs) controlling these programs were largely identified by genetics and chromosome mapping approaches in model systems, yet it is unlikely that we have identified all of the core GRN components. Moreover, large periodic transcriptional programs controlling a variety of processes certainly exist in important non-model organisms where genetic approaches to identifying networks are expensive, time-consuming or intractable. Ideally, the core network components could be identified using data-driven approaches on the transcriptome dynamics data already available. Previous work used dynamic gene expression features to identify sets of genes with periodic behavior; our work goes further to distinguish genes by role: core versus their non-regulatory outputs. Here we present a quantitative approach that can identify nodes of GRNs controlling cell or circadian cycles across taxa. There are practical applications of the approach for network biologists, but our findings reveal something unexpected—that there are quantifiable and fundamental shared features of these unrelated GRNs controlling disparate periodic phenotypes. Author summary Circadian rhythms, cellular division, and the developmental cycles of a multitude of living creatures, including those responsible for infectious diseases, are among the many dynamic phenomena in the natural world that are known to be the eventual output of gene regulatory networks. Identifying the small number of specialized genes that control these dynamic behaviors is of fundamental importance to our understanding of life, and our treatment of disease, but is difficult because of the sheer size of the genomes. We show that the core genes in organisms separated by millions of years of evolution have remarkable similarities that can be used to identify them.
2
Citation1
0
Save
6

Improved data sets and evaluation methods for the automatic prediction of DNA-binding proteins

Alexander Zaitzeff et al.Apr 11, 2021
Abstract Motivation Accurate automatic annotation of protein function relies on both innovative models and robust datasets. Due to their importance in biological processes, the identification of DNA-binding proteins directly from protein sequence has been the focus of many studies. However, the data sets used to train and evaluate these methods have suffered from substantial flaws. We describe some of the weaknesses of the data sets used in previous DNA-binding protein literature and provide several new data sets addressing these problems. We suggest new evaluative benchmark tasks that more realistically assess real-world performance for protein annotation models. We propose a simple new model for the prediction of DNA-binding proteins and compare its performance on the improved data sets to two previously published models. Additionally, we provide extensive tests showing how the best models predict across taxonomies. Results Our new gradient boosting model, which uses features derived from a published protein language model, outperforms the earlier models. Perhaps surprisingly, so does a baseline nearest neighbor model using BLAST percent identity. We evaluate the sensitivity of these models to perturbations of DNA-binding regions and control regions of protein sequences. The successful data-driven models learn to focus on DNA-binding regions. When predicting across taxonomies, the best models are highly accurate across species in the same kingdom and can provide some information when predicting across kingdoms. Code and Data Availability All the code and data for this paper can be found at https://github.com/AZaitzeff/tools_for_dna_binding_proteins . Contact alexander.zaitzeff@twosixtech.com
6
Citation1
0
Save
Load More