Abstract Osteosarcoma has a guarded prognosis. A major hurdle in developing more effective osteosarcoma therapies is the lack of disease-specific biomarkers to predict risk, prognosis, or therapeutic response. Exosomes are secreted extracellular microvesicles emerging as powerful diagnostic tools. However, their clinical application is precluded by challenges in identifying disease-associated cargo from the vastly larger background of normal exosome cargo. We developed a method using canine osteosarcoma in mouse xenografts to distinguish tumor-derived from host-response exosomal mRNAs. The model allows for the identification of canine osteosarcoma-specific gene signatures by RNA sequencing and a species-differentiating bioinformatics pipeline. An osteosarcoma-associated signature consisting of five gene transcripts ( SKA2, NEU1, PAF1, PSMG2, and NOB1 ) was validated in dogs with spontaneous osteosarcoma by qRT-PCR, while a machine learning model assigned dogs into healthy or disease groups. Serum/plasma exosomes were isolated from 53 dogs in distinct clinical groups (“healthy”, “osteosarcoma”, “other bone tumor”, or “non-neoplastic disease”). Pre-treatment samples from osteosarcoma cases were used as the training set and a validation set from post-treatment samples was used for testing, classifying as “osteosarcoma–detected” or “osteosarcoma–NOT detected”. Dogs in a validation set whose post-treatment samples were classified as “osteosarcoma–NOT detected” had longer remissions, up to 15 months after treatment. In conclusion, we identified a gene signature predictive of molecular remissions with potential applications in the early detection and minimal residual disease settings. These results provide proof-of-concept for our discovery platform and its utilization in future studies to inform cancer risk, diagnosis, prognosis, and therapeutic response. Abstract Figure