SG
Sarah Gilmore
Author with expertise in Hepatitis B Infection and Treatment
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
269
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Characterization of a KDM5 Small Molecule Inhibitor with Antiviral Activity against Hepatitis B Virus

Sarah Gilmore et al.Jun 29, 2022
Abstract Chronic hepatitis B (CHB) is a global health care challenge and a major cause of liver disease. To find new therapeutic avenues with a potential to functionally cure chronic Hepatitis B virus (HBV) infection, we performed a focused screen of epigenetic modifiers to identify replication inhibitors. From this work we identified isonicotinic acid inhibitors of the histone lysine demethylase 5 (KDM5) with potent anti-HBV activity. To enhance the cellular permeability and liver accumulation of the most potent KDM5 inhibitor identified (GS-080) an ester prodrug was developed (GS-5801) that resulted in improved bioavailability and liver exposure as well as an increased H3K4me3:H3 ratio on chromatin. GS-5801 treatment of HBV-infected primary human hepatocytes inhibited HBV replication and antigen levels. Evaluation of GS-5801 antiviral activity in a humanized mouse model of HBV infection, however, did not result in antiviral efficacy, despite achieving pharmacodynamic levels of H3K4me3:H3 predicted to be efficacious from the in vitro model. Here we discuss potential reasons for the disconnect between in vitro and in vivo efficacy, which highlight the translational difficulties of epigenetic targets for viral diseases.
0
Citation2
0
Save
0

Opposing signaling pathways regulate morphology in response to temperature in the fungal pathogen Histoplasma capsulatum

Lauren Rodriguez et al.Feb 11, 2019
Phenotypic switching between two opposing cellular states is a fundamental aspect of biology, and fungi provide facile systems to analyze the interactions between regulons that control this type of switch. A long-standing mystery in fungal pathogens of humans is how thermally dimorphic fungi switch their developmental form in response to temperature. These fungi, including the subject of this study, Histoplasma capsulatum, are temperature-responsive organisms that utilize unknown regulatory pathways to couple their cell shape and associated attributes to the temperature of their environment. H. capsulatum grows as a multicellular hypha in the soil that switches to a pathogenic yeast form in response to the temperature of a mammalian host. These states can be triggered in the laboratory simply by growing the fungus either at room temperature (where it grows as hyphae) or at 37ºC (where it grows as yeast). Prior worked revealed that 15-20% of transcripts are differentially expressed in response to temperature, but it is unclear which transcripts are linked to specific phenotypic changes such as cell morphology or virulence. To elucidate temperature-responsive regulons, we previously identified four transcription factors (Ryp1-4) that are required for yeast-phase growth at 37ºC; in each ryp mutant, the fungus grows constitutively as hyphae regardless of temperature and the cells fail to express genes that are normally induced in response to growth at 37ºC. Here we perform the first genetic screen to identify genes required for hyphal growth of H. capsulatum at room temperature and find that disruption of the signaling mucin MSB2 results in a yeast-locked phenotype. RNAseq experiments reveal that MSB2 is not required for the majority of gene expression changes that occur when cells are shifted to room temperature. However, a small subset of temperature-responsive genes is dependent on MSB2 for its expression, thereby implicating these genes in the process of filamentation. Disruption or knockdown of an Msb2-dependent MAP kinase (HOG2) and an APSES transcription factor (STU1) prevents hyphal growth at room temperature, validating that the Msb2 regulon contains genes that control filamentation. Notably, the Msb2 regulon shows conserved hyphal-specific expression in other dimorphic fungi, suggesting that this work defines a small set of genes that are likely to be conserved regulators and effectors of filamentation in multiple fungi. In contrast, a few yeast-specific transcripts, including virulence factors that are normally expressed only at 37ºC, are inappropriately expressed at room temperature in the msb2 mutant, suggesting that expression of these genes is coupled to growth in the yeast form rather than to temperature. Finally, we find that the yeast-promoting transcription factor Ryp3 associates with the MSB2 promoter and inhibits MSB2 transcript expression at 37ºC, whereas Msb2 inhibits accumulation of Ryp transcripts and proteins at room temperature. These findings indicate that the Ryp and Msb2 circuits antagonize each other in a temperature-dependent manner, thereby allowing temperature to govern cell shape and gene expression in this ubiquitous fungal pathogen of humans.