MB
Maya Bar
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
9
h-index:
22
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Immunity priming uncouples the growth-defense tradeoff in tomato

Meirav Leibman‐Markus et al.Jul 24, 2022
Abstract Plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, but can come at the expense of plant growth, leading to the “growth- defense trade-off” phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming via Systemic Acquired Resistance (SAR), or Induced Systemic Resistance (ISR), affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development, and that defense priming and growth tradeoffs can be uncoupled. Cytokinin response was activated during induced resistance, and found to be required for the observed growth and disease resistance resulting from ISR activation. ISR was found to have a stronger effect on plant development than SAR. Our results suggest that growth promotion and induced resistance can be co-dependent, and that in certain cases, defense priming can drive developmental processes and promote plant yield. Summary statement Growth-defense tradeoffs in plants result in loss of yield. Here, we demonstrate that immunity priming in different pathways uncouples this tradeoff and allows for disease resistant plants with robust growth.
9
Citation3
0
Save
9

Cytokinin inhibits fungal development and virulence by targeting the cytoskeleton and cellular trafficking

Rupali Gupta et al.Nov 5, 2020
Abstract Cytokinin (CK) is an important plant developmental regulator, having activities in many aspects of plant life and its response to the environment. CKs are involved in diverse processes in the plant, including stem-cell maintenance, vascular differentiation, growth and branching of roots and shoots, leaf senescence, nutrient balance and stress tolerance. In some cases, phytopathogens secrete CKs. It has been suggested that to achieve pathogenesis in the host, CK-secreting biotrophs manipulate CK signaling to regulate the host cell cycle and nutrient allocation. CK is known to induce host plant resistance to several classes of phytopathogens from a handful of works, with induced host immunity via salicylic acid signaling suggested to be the prevalent mechanism for this host resistance. Here, we show that CK directly inhibits the growth, development, and virulence of fungal phytopathogens. Focusing on Botrytis cinerea (Bc) , we demonstrate that various aspects of fungal development can be reversibly inhibited by CK. We also found that CK affects both budding and fission yeast in a similar manner. Investigating the mechanism by which CK influences fungal development, we conducted RNA-NGS on mock and CK treated B. cinerea samples, finding that CK inhibits the cell cycle, cytoskeleton, and endocytosis. Cell biology experiments demonstrated that CK affects cytoskeleton structure and cellular trafficking in Bc , lowering endocytic rates and endomembrane compartment sizes, likely leading to reduced growth rates and arrested developmental programs. Mutant analyses in yeast confirmed that the endocytic pathway is altered by CK. Our work uncovers a remarkably conserved role for a plant growth hormone in fungal biology, suggesting that pathogen-host interactions resulted in fascinating molecular adaptations on fundamental processes in eukaryotic biology. Importance Cytokinins (CKs), important plant growth/ developmental hormones, have previously been associated with host disease resistance. Here, we demonstrate that CK directly inhibits the growth, development, and virulence of B. cinerea ( Bc ) and many additional phytopathogenic fungi. Molecular and cellular analyses revealed that CK is not toxic to Bc , but rather, Bc likely recognizes CK and responds to it, resulting in cell cycle and individual cell growth retardation, via downregulation of cytoskeletal components and endocytic trafficking. Mutant analyses in yeast confirmed that the endocytic pathway is a CK target. Our work demonstrates a conserved role for CK in yeast and fungal biology, suggesting that suggesting that pathogen-host interactions may cause molecular adaptations on fundamental processes in eukaryotic biology.
9
Citation2
0
Save
1

TOR coordinates Cytokinin and Gibberellin signals mediating development and defense

Iftah Marash et al.Mar 8, 2022
Abstract Plants constantly perceive and process environmental signals and balance between the energetic demands of growth and defense. Growth arrest upon pathogen attack was previously suggested to result from a redirection of the plants’ metabolic resources towards the activation of plant defense. The energy sensor Target of Rapamycin (TOR) kinase is a conserved master coordinator of growth and development in all eukaryotes. Although TOR is positioned at the interface between development and defense, little is known about the mechanisms in which TOR may potentially regulate the relationship between these two modalities. The plant hormones cytokinin (CK) and gibberellin (GA) execute various aspects of plant development and defense. The ratio between CK and GA was reported to determine the outcome of developmental programs. Here, investigating the interplay between TOR-mediated development and TOR-mediated defense in tomato, we found that TOR silencing resulted in rescue of several different aberrant developmental phenotypes, demonstrating that TOR is required for the execution of developmental cues. In parallel, TOR inhibition enhanced immunity in genotypes with a low CK/GA ratio but not in genotypes with a high CK/GA ratio. TOR-inhibition mediated disease resistance was found to depend on developmental status, and was abolished in strongly morphogenetic leaves, while being strongest in mature, differentiated leaves. CK repressed TOR activity, suggesting that CK-mediated immunity may rely on TOR downregulation. At the same time, TOR activity was promoted by GA, and TOR silencing reduced GA sensitivity, indicating that GA signaling requires normal TOR activity. Our results demonstrate that TOR likely acts in concert with CK and GA signaling, executing signaling cues in both defense and development. Thus, differential regulation of TOR or TOR-mediated processes could regulate the required outcome of development-defense prioritization.
1
Citation2
0
Save
14

Natural variation in a short region of the Acidovorax citrulli type III-secreted effector AopW1 is associated with differences in cytotoxicity

Irene Jiménez‐Guerrero et al.May 24, 2021
Bacterial fruit blotch (BFB) is a serious disease of melon and watermelon caused by the Gram-negative bacterium Acidovorax citrulli. The strains of the pathogen can be divided into two major genetic groups, I and II. While group I strains are strongly associated with melon, group II strains are more aggressive on watermelon. Like many pathogenic bacteria, A. citrulli secretes a variety of protein effectors to the host cell via the type III secretion system. In the present study, we characterized AopW1, an A. citrulli type III-secreted effector that shares similarity with the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. aopW1 is present in group I and II strains, encoding products of 485 amino acids. Although highly conserved in most of the sequence, AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, including 14 amino acid differences between groups. Here we show that group I AopW1 is more toxic to yeast and plant cells than group II AopW1, having a stronger actin filament disruption activity, and increased ability to reduce plant callose deposition. We demonstrate the role of some of these 14 amino acid positions in determining the phenotypic differences between the two versions of the effector. Moreover, cellular analyses revealed that in addition to the interaction with actin filaments, AopW1 is localized to the endoplasmic reticulum, chloroplasts, and early and recycling plant endosomes, with differences observed between the two AopW1 versions. Finally, we show that overexpression of the endosome-associated protein EHD1 that increases cellular recycling, attenuates the toxic effects exerted by AopW1 and increases defence responses. This study provides insights into the HopW1 family of bacterial effectors and their interactions with the plant cell and provides first evidence on the involvement of EHD1 in response to biotic stress.
14
Citation1
0
Save
7

The VIL gene CRAWLING ELEPHANT controls maturation and differentiation in tomato via polycomb silencing

Ido Shwartz et al.Jun 2, 2021
Abstract VERNALIZATION INSENSITIVE 3-LIKE (VIL) proteins are PHD-finger proteins that recruit the repressor complex Polycomb Repressive Complex 2 (PRC2) to the promoters of target genes. Most known VIL targets are flowering repressor genes. Here, we show that the tomato VIL gene CRAWLING ELEPHANT ( CREL ) promotes differentiation throughout plant development by facilitating the trimethylation of Histone H3 on lysine 27 (H3K27me3). We identified the crel mutant in a screen for suppressors of the simple-leaf phenotype of entire ( e ), a mutant in the AUX/IAA gene ENTIRE/SlIAA9, involved in compound-leaf development in tomato. crel mutants have increased leaf complexity, and suppress the ectopic blade growth of e mutants. In addition, crel mutants are late flowering, and have delayed and aberrant stem, root and flower development. Consistent with a role for CREL in recruiting PRC2, crel mutants present altered H3K27me3 modifications at a subset of PRC2 targets throughout the genome. Our results uncover a wide role for CREL in plant and organ differentiation in tomato and suggest that CREL is required for targeting PRC2 activity to, and thus silencing, a specific subset of polycomb targets. Author summary Plants form organs continuously throughout their lives, and the number and shape of their organs is determined in a flexible manner according to the internal and external circumstances. Alongside this flexibility, plants maintain basic developmental programs to ensure proper functioning. Among the ways by which plants achieve flexible development is by tuning the pace of their maturation and differentiation, at both the plant and organ levels. One of the ways plants regulate the rate of maturation and differentiation is by changing gene expression. Here, we identified a gene that promotes plant and organ maturation and differentiation. This gene, CRAWLING ELEPHANT ( CREL ) acts by bringing a repressing complex to target genes. We show the importance of CREL in multiple developmental processes and in the expression of multiple genes throughout the tomato genome.
7
Citation1
0
Save
0

Show me your secret(ed) weapons: a multifaceted approach reveals novel type III-secreted effectors of a plant pathogenic bacterium

Irene Jiménez‐Guerrero et al.Jun 21, 2019
Many Gram-negative plant and animal pathogenic bacteria employ a type III secretion system (T3SS) to secrete protein effectors into the cells of their hosts and promote disease. The plant pathogen Acidovorax citrulli requires a functional T3SS for pathogenicity. As with Xanthomonas and Ralstonia spp ., an AraC-type transcriptional regulator, HrpX, regulates expression of genes encoding T3SS components and type III-secreted effectors (T3Es) in A. citrulli . A previous study reported eleven T3E genes in this pathogen, based on the annotation of a sequenced strain. We hypothesized that this was an underestimation. Guided by this hypothesis, we aimed at uncovering the T3E arsenal of the A. citrulli model strain, M6. We carried out a thorough sequence analysis searching for similarity to known T3Es from other bacteria. This analysis revealed 51 A. citrulli genes whose products are similar to known T3Es. Further, we combined machine learning and transcriptomics to identify novel T3Es. The machine learning approach ranked all A. citrulli M6 genes according to their propensity to encode T3Es. RNA-Seq revealed differential gene expression between wild-type M6 and a mutant defective in HrpX. Data combined from these approaches led to the identification of seven novel T3E candidates, that were further validated using a T3SS-dependent translocation assay. These T3E genes encode hypothetical proteins, do not show any similarity to known effectors from other bacteria, and seem to be restricted to plant pathogenic Acidovorax species. Transient expression in Nicotiana benthamiana revealed that two of these T3Es localize to the cell nucleus and one interacts with the endoplasmic reticulum. This study not only uncovered the arsenal of T3Es of an important pathogen, but it also places A. citrulli among the “richest” bacterial pathogens in terms of T3E cargo. It also revealed novel T3Es that appear to be involved in the pathoadaptive evolution of plant pathogenic Acidovorax species.Author summary Acidovorax citrulli is a Gram-negative bacterium that causes bacterial fruit blotch (BFB) disease of cucurbits. This disease represents a serious threat to cucurbit crop production worldwide. Despite the agricultural importance of BFB, the knowledge about basic aspects of A . citrulli-plant interactions is rather limited. As many Gram-negative plant and animal pathogenic bacteria, A. citrulli employs a complex secretion system, named type III secretion system, to deliver protein virulence effectors into the host cells. In this work we aimed at uncovering the arsenal of type III-secreted effectors (T3Es) of this pathogen by combination of bioinformatics and experimental approaches. We found that this bacterium possesses at least 51 genes that are similar to T3E genes from other pathogenic bacteria. In addition, our study revealed seven novel T3Es that seem to occur only in A. citrulli strains and in other plant pathogenic Acidovorax species. We found that two of these T3Es localize to the plant cell nucleus while one partially interacts with the endoplasmic reticulum. Further characterization of the novel T3Es identified in this study may uncover new host targets of pathogen effectors and new mechanisms by which pathogenic bacteria manipulate their hosts.
15

Collaboration of multiple pathways in making a compound leaf

Alon Israeli et al.Aug 20, 2020
Summary The variability in leaf form in nature is immense. Leaf patterning occurs by differential growth that occurs during a limited window of morphogenetic activity at the leaf marginal meristem. While many regulators have been implicated in the designation of the morphogenetic window and in leaf patterning, how these effectors interact to generate a particular form is still not well understood. We addressed the interaction among different effectors of tomato compound leaf development, using genetic and molecular analyses. Mutations in the tomato auxin response factor SlARF5/SlMP, which promotes leaflet formation, suppressed the increased leaf complexity of mutants with extended morphogenetic window. Impaired activity of the NAC/CUC transcription factor GOBLET (GOB), which specifies leaflet boundaries, also reduced leaf complexity in these backgrounds. Analysis of genetic interactions showed that the patterning factors SlMP, GO B and the MYB transcription factor LYRATE (LYR) act in parallel to promote leaflet formation. This work places an array of developmental regulators in a morphogenetic context. It reveals how organ-level differentiation rate and local growth are coordinated to sculpture an organ. These concepts and findings are applicable to other plant species and developmental processes that are regulated by patterning and differentiation.
14

Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium

Alon Israeli et al.Dec 15, 2020
Abstract Morphogenesis and differentiation are important stages in organ development and shape determination. However, how they are balanced and tuned during development is not fully understood. In the compound leaved tomato, an extended morphogenesis phase allows for the initiation of leaflets, resulting in the compound form. Maintaining a prolonged morphogenetic phase in early stages of compound-leaf development is dependent on delayed activity of several factors that promote differentiation, including CIN-TCP transcription factor (TF) LA, the MYB TF CLAU and the plant hormone Gibberellin (GA). Here, we investigated the genetic regulation of the morphogenesis-differentiation balance by studying the relationship between LA, CLAU and GA. Our genetic and molecular examination suggest that LA is expressed more broadly than CLAU and determines the spatio-temporal context of CLAU activity. We demonstrate that both LA and CLAU affect the Cytokinin/Gibberellin (CK/GA) balance. LA reduces the sensitivity of the leaf margin to CK, shown before to be also affected by CLAU. CLAU affects leaf active GA content and sensitivity, shown previously to be also influenced by LA. Therefore, LA and CLAU likely function in parallel pathways to promote leaf differentiation by converging on common downstream processes, including the CK/GA balance.
Load More