RZ
Rongqian Zhang
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
4
h-index:
2
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

RELIEF: a structured multivariate approach for removal of latent inter-scanner effects

Rongqian Zhang et al.Aug 3, 2022
J
A
L
R
Abstract Combining data collected from multiple study sites is becoming common and is advantageous to researchers to increase the generalizability and replicability of scientific discoveries. However, at the same time, unwanted inter-scanner biases are commonly observed across neuroimaging data collected from multiple study sites or scanners, rendering difficulties in integrating such data to obtain reliable findings. While several methods for handling such unwanted variations have been proposed, most of them use univariate approaches that could be too simple to capture all sources of scanner-specific variations. To address these challenges, we propose a novel multivariate harmonization method, called RELIEF ( RE moval of L atent I nter-scanner E ffects through F actorization) for estimating and removing both explicit and latent scanner effects. Our method is the first approach to introduce the simultaneous dimension reduction and factorization of interlinked matrices to a data harmonization context, which provides a new direction in methodological research for correcting inter-scanner biases. Analyzing diffusion tensor imaging (DTI) data from the Social Processes Initiative in Neurobiology of the Schizophrenia (SPINS) study and conducting extensive simulation studies, we show that RELIEF outperforms existing harmonization methods in mitigating inter-scanner biases and retaining biological associations of interest to increase statistical power. RELIEF is publicly available as an R package.
0

SAN: mitigating spatial covariance heterogeneity in cortical thickness data collected from multiple scanners or sites

Rongqian Zhang et al.Jan 1, 2023
+2
L
L
R
In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called SAN (Spatial Autocorrelation Normalization) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.