AI
Anastasia Illarionova
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
19
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The Foundational data initiative for Parkinson’s disease (FOUNDIN-PD): enabling efficient translation from genetic maps to mechanism

Elisângela Bressan et al.Jun 3, 2021
Abstract The FOUNdational Data INitiative for Parkinson’s Disease (FOUNDIN-PD) is an international collaboration producing fundamental resources for Parkinson’s disease (PD). FOUNDIN-PD generated a multi-layered molecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA) neurons, a major affected cell type in PD. The lines were derived from the Parkinson’s Progression Markers Initiative study including participants with PD carrying monogenic PD ( SNCA ) variants, variants with intermediate effects and variants identified by genome-wide association studies and unaffected individuals. We generated genetic, epigenetic, regulatory, transcriptomic, and longitudinal cellular imaging data from iPSC-derived DA neurons to understand molecular relationships between disease associated genetic variation and proximate molecular events. These data reveal that iPSC-derived DA neurons provide a valuable cellular context and foundational atlas for modelling PD genetic risk. We have integrated these data into a FOUNDIN-PD data browser ( https://www.foundinpd.org ) as a resource for understanding the molecular pathogenesis of PD.
1
Citation6
0
Save
25

Genome-wide analysis of Structural Variants in Parkinson’s Disease using Short-Read Sequencing data

Kimberley Billingsley et al.Aug 22, 2022
Abstract Parkinson’s disease is a complex neurodegenerative disorder, affecting approximately one million individuals in the USA alone. A significant proportion of risk for Parkinson’s disease is driven by genetics. Despite this, the majority of the common genetic variation that contributes to disease risk is unknown, in-part because previous genetic studies have focussed solely on the contribution of single nucleotide variants. Structural variants represent a significant source of genetic variation in the human genome. However, because assay of this variability is challenging, structural variants have not been cataloged on a genome-wide scale, and their contribution to the risk of Parkinson’s disease remains unknown. In this study, we 1) leveraged the GATK-SV pipeline to detect and genotype structural variants in 7,772 short-read sequencing data and 2) generated a subset of matched whole-genome Oxford Nanopore Technologies long-read sequencing data from the PPMI cohort to allow for comprehensive structural variant confirmation. We detected, genotyped, and tested 3,154 “high-confidence” common structural variant loci, representing over 412 million nucleotides of non-reference genetic variation. Using the long-read sequencing data, we validated three structural variants that may drive the association signals at known Parkinson’s disease risk loci, including a 2kb intronic deletion within the gene LRRN4 . Further, we confirm that the majority of structural variants in the human genome cannot be detected using short-read sequencing alone, encompassing on average around 4 million nucleotides of inaccessible sequence per genome. Therefore, although these data provide the most comprehensive survey of the contribution of structural variants to the genetic risk of Parkinson’s disease to date, this study highlights the need for large-scale long-read datasets to fully elucidate the role of structural variants in Parkinson’s disease.
25
Citation3
0
Save
10

Rescue of the increased susceptibility to Mild Chronic Oxidative Stress of iNeurons carrying the MAPT Chromosome 17q21.3 H1/H1 risk allele by FDA-approved compounds

Eldem Sadikoglou et al.Nov 7, 2022
Abstract The microtubule associated protein tau (MAPT) chromosome 17q21.31 locus lies within a region of high linkage disequilibrium (LD) conferring two extended haplotypes commonly referred to as H1 and H2. The major haplotype, H1 has been genetically associated with an increased risk for multiple neurodegenerative disorders, including Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration (CBD), APOE ε4-negative Alzheimer’s disease (AD) and Parkinson’s disease (PD). The mechanism causing this increased risk is largely unknown. Here, we investigated the role of Mild Chronic Oxidative Stress (MCOS) in neurogenin 2 ( NGN2 ) induced neurons (iNeurons) derived from iPS (induced pluripotent stem cells) from carriers of both haplotypes. We identified that iNeurons of the H1 homozygous haplotype showed an increased susceptibility to MCOS compared to homozygous H2 carriers, leading to cell death through ferroptosis. We performed a cellular screen in H1 iNeurons using a FDA-approved Drug Library and identified candidate molecules that rescued the increased susceptibility to MCOS and prevented ferroptosis in H1 iNeurons. Highlights Mild Chronic Oxidative Stress induces neurotoxicity via ferroptosis on iNGN2 neurons Axonal degeneration, disordered microtubules, blebs precede neurotoxicity MAPT-17q21.3 locus H1/H1, risk allele for NDD is more vulnerable to MCOS FDA-approved drugs reverse MCOS induced ferroptosis on H1/H1 risk allele Abstract Figure
4

The IPDGC/GP2 Hackathon - an open science event for training in data science, genomics, and collaboration using Parkinson’s disease data

Hampton Leonard et al.May 10, 2022
Abstract Background Open science and collaboration are necessary to facilitate the advancement of Parkinson’s disease (PD) research. Hackathons are collaborative events that bring together people with different skill sets and backgrounds to generate resources and creative solutions to problems. These events can be used as training and networking opportunities. Objective To coordinate a virtual hackathon to develop novel PD research tools. Methods 49 early career scientists from 12 countries collaborated in a virtual 3-day hackathon event in May 2021, during which they built tools and pipelines with a focus on PD. Resources were created with the goal of helping scientists accelerate their own research by having access to the necessary code and tools. Results Each team was allocated one of nine different projects, each with a different goal. These included developing post-genome-wide association studies (GWAS) analysis pipelines, downstream analysis of genetic variation pipelines, and various visualization tools. Conclusion Hackathons are a valuable approach to inspire creative thinking, supplement training in data science, and foster collaborative scientific relationships, which are foundational practices for early career researchers. The resources generated can be used to accelerate research on the genetics of PD.