Abstract Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunological sex differences are not fully understood. Using GBM models, we demonstrate that T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased T cell infiltration and increased T cell exhaustion. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD1 treatment. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, which was further corroborated by in vitro exhaustion assays. Moreover, increased T cell exhaustion was observed in male GBM patients. These findings demonstrate sex-specific pre-determined behavior of T cells is critical in inducing sex differences in GBM progression and immunotherapy response. Statement of significance Immunotherapies in GBM patients have been unsuccessful due to a variety of factors including the highly immunosuppressive tumor microenvironment in GBM. This study demonstrates that sex-specific T cell behaviors are predominantly intrinsically regulated, further suggesting sex-specific approaches can be leveraged to potentially improve therapeutic efficacy of immunotherapy in GBM.