FK
Frank Kozielski
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(100% Open Access)
Cited by:
726
h-index:
33
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Motor-dependent microtubule disassembly driven by tubulin tyrosination

Rikken G.L.J.A. et al.Jun 29, 2009
In cells, stable microtubules (MTs) are covalently modified by a carboxypeptidase, which removes the C-terminal Tyr residue of α-tubulin. The significance of this selective detyrosination of MTs is not understood. In this study, we report that tubulin detyrosination in fibroblasts inhibits MT disassembly. This inhibition is relieved by overexpression of the depolymerizing motor mitotic centromere-associated kinesin (MCAK). Conversely, suppression of MCAK expression prevents disassembly of normal tyrosinated MTs in fibroblasts. Detyrosination of MTs suppresses the activity of MCAK in vitro, apparently as the result of a decreased affinity of the adenosine diphosphate (ADP)–inorganic phosphate- and ADP-bound forms of MCAK for the MT lattice. Detyrosination also impairs MT disassembly in neurons and inhibits the activity of the neuronal depolymerizing motor KIF2A in vitro. These results indicate that MT depolymerizing motors are directly inhibited by the detyrosination of tubulin, resulting in the stabilization of cellular MTs. Detyrosination of transiently stabilized MTs may give rise to persistent subpopulations of disassembly-resistant polymers to sustain subcellular cytoskeletal differentiation.
42

Emerging variants of SARS-CoV-2 NSP10 highlight strong functional conservation of its binding to two non-structural proteins, NSP14 and NSP16

Huan Wang et al.Dec 26, 2022
Abstract The coronavirus SARS-CoV-2 protects its RNA from being recognized by host immune responses by methylation of its 5’ end, also known as capping. This process is carried out by two enzymes, non-structural protein 16 (NSP16) containing 2’-O-methyltransferase and NSP14 through its N7 methyltransferase activity, which are essential for the replication of the viral genome as well as evading the host’s innate immunity. NSP10 acts as a crucial cofactor and stimulator of NSP14 and NSP16. To further understand the role of NSP10, we carried out a comprehensive analysis of >13 million globally collected whole-genome sequences (WGS) of SARS-CoV-2 obtained from the Global Initiative Sharing All Influenza Data (GISAID) and compared it with the reference genome Wuhan/WIV04/2019 to identify all currently known variants in NSP10. T12I, T102I, and A104V in NSP10 have been identified as the three most frequent variants and characterized using X-ray crystallography, biophysical assays and enhanced sampling simulations. In contrast to other proteins such as spike and NSP6, NSP10 is significantly less prone to mutation due to its crucial role in replication. The functional effects of the variants were examined for their impact on the binding affinity and stability of both NSP14-NSP10 and NSP16-NSP10 complexes. These results highlight the limited changes induced by variant evolution in NSP10 and reflect on the critical roles NSP10 plays during the SARS-CoV-2 life cycle. These results also indicate that there is limited capacity for the virus to overcome inhibitors targeting NSP10 via the generation of variants in inhibitor binding pockets. Significance Statement The SARS-CoV-2 proteins have constantly been evolving. These variants assist the virus to survive, adapt and evade the host immune responses. While the main focus has been on structural proteins like Spike, there is very limited structural and functional information on the effects of emerging mutations on other essential non-structural viral proteins. One such protein is NSP10, an essential cofactor for NSP14 and NSP16. This study demonstrates that NSP10 is more resistant to genetic variations than other SARS-CoV-2 non-structural proteins and that the presence of mutations conserve structural and dynamic changes in NSP10. The effects of naturally occurring mutations reflect the evolutionary relationship between structurally conserved essential cofactors, their function and the role they play in the survival of the virus.
42
Citation3
0
Save
11

Two ligand-binding sites on SARS-CoV-2 non-structural protein 1 revealed by fragment-based x-ray screening

Shumeng Ma et al.Jun 13, 2022
Abstract The regular reappearance of coronavirus (CoV) outbreaks over the past 20 years has caused significant health consequences and financial burdens worldwide. The most recent and still ongoing novel CoV pandemic, caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has brought a range of devastating consequences. Due to the exceptionally fast development of vaccines, the mortality rate of the virus has been curbed to a significant extent. However, the limitations of vaccination efficiency and applicability, coupled with the still high infection rate, emphasise the urgent need for discovering safe and effective antivirals against SARS-CoV-2 through suppressing its replication and or attenuating its virulence. Non-structural protein 1 (nsp1), a unique viral and conserved leader protein, is a crucial virulence factor for causing host mRNA degradation, suppressing interferon (IFN) expression and host antiviral signalling pathways. In view of the essential role of nsp1 in the CoV life cycle, it is regarded as an exploitable target for antiviral drug discovery. Here, we report a variety of fragment hits against SARS-CoV-2 nspl identified by fragment-based screening via X-ray crystallography. We also determined the structure of nsp1 at atomic resolution (0.95 Å). Binding affinities of hits against nsp1 were determined by orthogonal biophysical assays such as microscale thermophoresis and thermal sift assays. We identified two ligand-binding sites on nsp1, one deep and one shallow pocket, which are not conserved between the three medially relevant SARS, SARS-CoV-2 and MERS coronaviruses. Our study provides an excellent starting point for the development of more potent nsp1-targeting inhibitors and functional studies on SARS-CoV-2 nsp1.
11
Citation2
0
Save
8

Conformational flexibility Of A Highly Conserved Helix Controls Cryptic Pocket Formation In FtsZ

Aisha Alnami et al.Sep 9, 2020
Mycobacterium tuberculosis is responsible for more than 1.6 million deaths per year. Overcoming failure from established therapies owing to multidrug resistance requires the identification of novel targets. One potential antibacterial target is filamentous temperature sensitive protein Z (FtsZ), which is the bacterial homologue of mammalian tubulin, a validated cancer target. M. tuberculosis FtsZ function is essential, with its inhibition leading to arrest of cell division, elongation of the bacterial cell and eventual cell death. However, the development of potent inhibitors against FtsZ has been a challenge due to the lack of structural information. Here we have solved multiple crystal structures of M. tuberculosis FtsZ in complex with coumarin analogues. Coumarins bind exclusively to two novel cryptic pockets in nucleotide-free FtsZ but not to the binary FtsZ-GTP or GDP complexes. Our findings provide a detailed understanding of the molecular basis for cryptic pocket formation, controlled by the conformational flexibility of the H7 helix, and thus reveal an important structural and mechanistic rationale for coumarin’s antibacterial activity.
1

High-confidence placement of difficult-to-fit fragments into electron density by using anomalous signals - a case study using hits targeting SARS-CoV-2 non-structural protein 1

Shumeng Ma et al.Jun 16, 2023
Abstract The identification of multiple simultaneous orientations of small molecule inhibitors binding to a protein target is a common challenge. It has recently been reported that the conformational heterogeneity of ligands is widely underreported in the Protein Data Bank, which is likely to impede optimal exploitation to improve affinity of these ligands 1 . Significantly less is even known about multiple binding orientations for fragments (< 300 Da) although this information would be essential for subsequent fragment optimisation using growing, linking or merging and rational structure-based design. Here we use recently reported fragment hits for the SARS-CoV-2 non-structural protein 1 (nsp1) N-terminal domain to propose a general procedure for unambiguously identifying binding orientations of 2-dimensional fragments containing either sulphur or chloro substituents within the wavelength range of most tunable beamlines. By measuring datasets at two energies, using a tuneable beamline operating in vacuum and optimised for data collection at very low X-ray energies, we show that the anomalous signal can be used to identify multiple orientations in small fragments containing sulphur and/or chloro substituents or to verify recently reported conformations. Although in this specific case we identified the positions of sulphur and chlorine in fragments bound to their protein target, we are confident that this work can be further expanded to additional atoms or ions which often occur in fragments. Finally, our improvements in the understanding of binding orientations will also serve to advance the rational optimisation of SARS-CoV-2 nsp1 targeting fragment hits.
0

High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms

Shumeng Ma et al.Jun 1, 2024
Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.
Load More