JG
Joy Gumin
Author with expertise in Macrophage Activation and Polarization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(73% Open Access)
Cited by:
2,822
h-index:
33
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Human Bone Marrow–Derived Mesenchymal Stem Cells in the Treatment of Gliomas

Akira Nakamizo et al.Apr 15, 2005
+9
T
F
A
Abstract The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow–derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow–derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. To test this, we isolated hMSCs from bone marrow of normal volunteers, fluorescently labeled the cells, and injected them into the carotid artery of mice bearing human glioma intracranial xenografts (U87, U251, and LN229). hMSCs were seen exclusively within the brain tumors regardless of whether the cells were injected into the ipsilateral or contralateral carotid artery. In contrast, intracarotid injections of fibroblasts or U87 glioma cells resulted in widespread distribution of delivered cells without tumor specificity. To assess the potential of hMSCs to track human gliomas, we injected hMSCs directly into the cerebral hemisphere opposite an established human glioma and showed that the hMSCs were capable of migrating into the xenograft in vivo. Likewise, in vitro Matrigel invasion assays showed that conditioned medium from gliomas, but not from fibroblasts or astrocytes, supported the migration of hMSCs and that platelet-derived growth factor, epidermal growth factor, or stromal cell–derived factor-1α, but not basic fibroblast growth factor or vascular endothelial growth factor, enhanced hMSC migration. To test the potential of hMSCs to deliver a therapeutic agent, hMSCs were engineered to release IFN-β (hMSC-IFN-β). In vitro coculture and Transwell experiments showed the efficacy of hMSC-IFN-β against human gliomas. In vivo experiments showed that treatment of human U87 intracranial glioma xenografts with hMSC-IFN-β significantly increase animal survival compared with controls (P &lt; 0.05). We conclude that hMSCs can integrate into human gliomas after intravascular or local delivery, that this engraftment may be mediated by growth factors, and that this tropism of hMSCs for human gliomas can be exploited to therapeutic advantage.
0
Citation1,017
0
Save
0

Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma

Krishna Bhat et al.Aug 29, 2013
+30
B
V
K
Despite extensive study, few therapeutic targets have been identified for glioblastoma (GBM). Here we show that patient-derived glioma sphere cultures (GSCs) that resemble either the proneural (PN) or mesenchymal (MES) transcriptomal subtypes differ significantly in their biological characteristics. Moreover, we found that a subset of the PN GSCs undergoes differentiation to a MES state in a TNF-α/NF-κB-dependent manner with an associated enrichment of CD44 subpopulations and radioresistant phenotypes. We present data to suggest that the tumor microenvironment cell types such as macrophages/microglia may play an integral role in this process. We further show that the MES signature, CD44 expression, and NF-κB activation correlate with poor radiation response and shorter survival in patients with GBM.
0
Citation909
0
Save
0

Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma

Frederick Lang et al.Feb 12, 2018
+20
C
C
F
Purpose DNX-2401 (Delta-24-RGD; tasadenoturev) is a tumor-selective, replication-competent oncolytic adenovirus. Preclinical studies demonstrated antiglioma efficacy, but the effects and mechanisms of action have not been evaluated in patients. Methods A phase I, dose-escalation, biologic-end-point clinical trial of DNX-2401 was conducted in 37 patients with recurrent malignant glioma. Patients received a single intratumoral injection of DNX-2401 into biopsy-confirmed recurrent tumor to evaluate safety and response across eight dose levels (group A). To investigate the mechanism of action, a second group of patients (group B) underwent intratumoral injection through a permanently implanted catheter, followed 14 days later by en bloc resection to acquire post-treatment specimens. Results In group A (n = 25), 20% of patients survived > 3 years from treatment, and three patients had a ≥ 95% reduction in the enhancing tumor (12%), with all three of these dramatic responses resulting in > 3 years of progression-free survival from the time of treatment. Analyses of post-treatment surgical specimens (group B, n = 12) showed that DNX-2401 replicates and spreads within the tumor, documenting direct virus-induced oncolysis in patients. In addition to radiographic signs of inflammation, histopathologic examination of immune markers in post-treatment specimens showed tumor infiltration by CD8 + and T-bet + cells, and transmembrane immunoglobulin mucin-3 downregulation after treatment. Analyses of patient-derived cell lines for damage-associated molecular patterns revealed induction of immunogenic cell death in tumor cells after DNX-2401 administration. Conclusion Treatment with DNX-2401 resulted in dramatic responses with long-term survival in recurrent high-grade gliomas that are probably due to direct oncolytic effects of the virus followed by elicitation of an immune-mediated antiglioma response.
0
Citation540
0
Save
0

The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma

Krishna Bhat et al.Dec 15, 2011
+18
V
K
K
Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.
0
Citation345
0
Save
1

Measuring the metabolic evolution of glioblastoma throughout tumor development, regression, and recurrence with hyperpolarized magnetic resonance

Travis Salzillo et al.Jun 11, 2021
+10
J
V
T
Summary Rapid diagnosis and therapeutic monitoring of aggressive diseases such as glioblastoma can improve patient survival by providing physicians the time to optimally deliver treatment. This research tested whether metabolic imaging with hyperpolarized MRI could detect changes in tumor progression faster than conventional anatomic MRI in patient-derived glioblastoma murine models. To capture the dynamic nature of cancer metabolism, hyperpolarized MRI, NMR spectroscopy, and immunohistochemistry were performed at several time-points during tumor development, regression, and recurrence. Hyperpolarized MRI detected significant changes of metabolism throughout tumor progression whereas conventional MRI was less sensitive. This was accompanied by aberrations in amino acid and phospholipid lipid metabolism and MCT1 expression. Hyperpolarized MRI can help address clinical challenges such as identifying malignant disease prior to aggressive growth, differentiating pseudoprogression from true progression, and predicting relapse. The individual evolution of these metabolic assays as well as their correlations with one another provides context for further academic research.
1
Citation6
0
Save
10

Immune landscape of isocitrate dehydrogenase stratified human gliomas

Pravesh Gupta et al.Nov 9, 2022
+19
S
M
P
ABSTRACT The brain tumor immune microenvironment (TIME) continuously evolves during glioma progression, but only a limited view of a highly complex glioma associated immune contexture across isocitrate dehydrogenase mutation (IDH) classified gliomas is known. Herein, we present an unprecedentedly comprehensive view of myeloid and lymphoid cell type diversity based on our single cell RNA sequencing and spectral cytometry-based interrogation of tumor-associated leukocytes from fifty-five IDH stratified primary and recurrent human gliomas and three non-glioma brains. Our analyses revealed twenty-two myeloid and lymphoid cell types within and across glioma subtypes. Glioma severity correlated with microglial attrition concomitant with a continuum of invading monocyte-derived microglia-like and macrophages amongst other infiltrating conventional T and NK lymphocytes and unconventional mucosa associated invariant T (MAIT) cells. Specifically, certain microglial and monocyte-derived subpopulations were associated with antigen presentation gene modules, akin to cross-presenting dendritic cells (DCs). Furthermore, we identified phagocytosis and antigen presentation gene modules enriched in Triggering receptor expressed on myeloid (TREM)-2 + cells as a putative anti-glioma axis. Accelerated glioma growth was observed in Trem2 deficient mice implanted with CT2A glioma cells affirming the anti-glioma role of TREM2 + myeloid cells. In addition to providing a comprehensive landscape of glioma-specific immune contexture, our investigations discover TREM2 as a novel immunotherapy target for brain malignancies.
10
Citation3
0
Save
0

Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD

Mayra Shanley et al.Aug 1, 2024
+31
J
M
M
Glioblastoma (GBM) is an aggressive brain cancer with limited therapeutic options. Natural killer (NK) cells are innate immune cells with strong anti-tumor activity and may offer a promising treatment strategy for GBM. We compared the anti-GBM activity of NK cells engineered to express interleukin (IL)-15 or IL-21. Using multiple in vivo models, IL-21 NK cells were superior to IL-15 NK cells both in terms of safety and long-term anti-tumor activity, with locoregionally administered IL-15 NK cells proving toxic and ineffective at tumor control. IL-21 NK cells displayed a unique chromatin accessibility signature, with CCAAT/enhancer-binding proteins (C/EBP), especially CEBPD, serving as key transcription factors regulating their enhanced function. Deletion of CEBPD resulted in loss of IL-21 NK cell potency while its overexpression increased NK cell long-term cytotoxicity and metabolic fitness. These results suggest that IL-21, through C/EBP transcription factors, drives epigenetic reprogramming of NK cells, enhancing their anti-tumor efficacy against GBM.
0
Citation1
0
Save
0

Immune landscape of isocitrate dehydrogenase-stratified primary and recurrent human gliomas

Pravesh Gupta et al.Aug 8, 2024
+27
S
M
P
Human gliomas are classified using isocitrate dehydrogenase (IDH) status as a prognosticator; however, the influence of genetic differences and treatment effects on ensuing immunity remains unclear.
0
Citation1
0
Save
0

Inhibition of the av integrin-TGF-b axis improves natural killer cell function against glioblastoma stem cells

Hila Shaim et al.Mar 31, 2020
+46
J
Q
H
Glioblastoma, the most aggressive brain cancer, often recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. Here, we show that patient-derived GSCs, but not normal astrocytes, are highly sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. In contrast, single cell analysis of autologous, tissue infiltrating NK cells isolated from surgical samples of high-grade glioblastoma patient tumors using mass cytometry and single cell RNA sequencing revealed an abnormal phenotype associated with impaired lytic function compared with peripheral blood NK cells from GBM patients or healthy donors. This immunosuppression was attributed to an integrin-TGF-β mechanism, activated by direct cell-cell contact between GSCs and NK cells. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-β signaling, or with TGF-β receptor 2 gene-edited NK cells prevented GSC-induced NK cell dysfunction and tumor growth. Collectively, our findings reveal a novel mechanism of NK cell immune evasion by GSCs and implicate the integrin-TGF-β axis as a useful therapeutic target to eliminate GSCs in this devastating tumor.
0

Medium-chain acyl-CoA dehydrogenase, a gatekeeper of mitochondrial function in glioblastoma multiforme

Francomichele Puca et al.Sep 28, 2020
+24
C
L
F
SUMMARY Glioblastoma (GBM) is among the deadliest of human cancers. Despite extensive efforts, it has proven to be highly resistant to chemo- and immune-based therapeutic strategies, and little headway has been made with targeted inhibitors. Like many cancers, metabolism is dysregulated in GBM. Thus, to identify new vulnerabilities and drug targets in GBM, we conducted genetic screens using pooled RNAi libraries targeting metabolic enzymes. We screened multiple glioma stem cell-derived (GSC) xenograft models, which revealed that several enzymes involved in the mitochondrial metabolism of fatty acids were required for tumor cell proliferation. From among these, we focused on medium-chain acyl-CoA dehydrogenase (MCAD), which oxidizes medium-chain fatty acids, due to its consistently high score across all of our screens, as well as its high expression level in multiple GSC models and its upregulation in GBM compared to normal brain. In this manuscript, we describe the dependence of GBM on sustained fatty acid metabolism to actively catabolize lipid species that would otherwise damage the mitochondrial structure. The uptake of mediumchain fatty acids lacks negative feedback regulation; therefore, in the absence of MCAD, medium-chain fatty acids accumulate to toxic levels, inducing reactive oxygen species (ROS), mitochondrial damage and failure, and apoptosis. Taken together, our findings uncover a previously unappreciated protective role exerted by MCAD in GBM cells, making it a unique and therapeutically exploitable vulnerability.
Load More